Novel Strategies for Understanding and Treating Fibrous Dysplasia
理解和治疗纤维发育不良的新策略
基本信息
- 批准号:10658595
- 负责人:
- 金额:$ 69.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectArtificial IntelligenceAutomobile DrivingBindingBiological AssayBiological MarkersBiologyBone DiseasesBone GrowthBone callusCalvariaCellsClinicalComplexCre driverCyclic AMPDNA Sequence AlterationDataDiseaseDysplasiaFoundationsFractureFunctional disorderFutureG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGNAS geneGTP-Binding Protein alpha Subunits, GsGene Expression ProfileGenesGeneticHealthHematopoietic stem cellsHomeostasisHumanHybridsHyperactivityIndividualInstitutionIsoproterenolKineticsKnowledgeLeadLesionLigandsMcCune-Albright SyndromeMediatingMedicalModelingMolecularMolecular ProbesMusMusculoskeletal DiseasesMutationNatural regenerationOsteitis Fibrosa DisseminataOsteoblastsOsteocytesOsteogenesisOsteoporosisPTH genePathologyPathway interactionsPatientsPhenotypePhysiologyProductionPropertyProteinsPublic HealthRecombinantsRoleSamplingSignal PathwaySignal TransductionSignaling MoleculeTestingTherapeuticVariantWNT Signaling PathwayWNT4 geneWNT9A geneWnt proteinsWorkanalytical methodbonebone cellbone fracture repairbone lossbone repairbone turnovercell typecomputational intelligencedigitaleffective therapyexperiencegenetic approachguanine nucleotide binding proteinimprovedin vivo evaluationinduced pluripotent stem cellmouse modelnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsosteogenicoverexpressionparathyroid hormone-related proteinpharmacologicpreventrare conditionreceptorrepairedsingle-cell RNA sequencingskeletalskeletal stem cellstem cell functionstem cell modeltherapeutic targettooltranscriptometranscriptomicstreatment strategy
项目摘要
PROJECT SUMMARY
Current treatments for many musculoskeletal disorders are often suboptimal. Understanding the signals
controlling skeletal homeostasis and repair is of high relevance, since this knowledge is critical for developing
effective therapies for common conditions such as osteoporosis and fractures.
In this proposal, we study fibrous dysplasia (FD) as a way to understand the regulators of human bone formation,
and test if these pathways could then be used to enhance bone repair. FD accounts for 2.5% of all bone lesions
and can occur as part of McCune-Albright Syndrome (MAS). FD is caused by genetic mutations in the GNAS
locus, leading to a constitutively active Gs-GPCR protein, hence increasing cAMP levels and causing aberrant
cellular signaling. Medical treatments for this disfiguring disorder are sorely lacking. This proposal uses new
tools, including mouse models, human induced pluripotent stem cells (iPSCs), skeletal stem/progenitor cells,
and advanced genetic strategies, to address the critical knowledge gaps and to find novel therapies for these
medically significant conditions. We propose three specific aims:
Aim 1: Identify novel compounds that directly target Gsα-regulated cAMP and Wnt production. We
previously showed that stopping excess Gs-GPCR pathway activity in mice could dramatically reverse FD-like
bone lesions. Using a new artificial intelligence computational approach, we found 71 candidate compounds
predicted to selectively bind the GsαR201H protein. Preliminary studies demonstrate that some of these show the
desired inhibition of GsαR201H-induced basal cAMP production. This Aim takes our top candidates and further
characterizes their ability to block cAMP and Wnt activity, as potential molecular tools for manipulating GNAS.
We also test if the lead compounds can reverse existing FD lesions in mouse calvarial cultures.
Aim 2: Test if Wnt inhibition can prevent FD bone lesions in mice. How the GNAS mutations in FD cause
dramatic bone formation is still poorly defined. We recently found that three proteins, Wnt4, Wnt5a, and Wnt9a,
are upregulated in both mouse and human FD bone lesions. This Aim tests if blocking these proteins can reverse
FD bone lesions in mice, and examines how each Wnt protein impacts FD lesion pathology.
Aim 3: Determine the pathways that are dysregulated in human FD bone lesions and assess the roles of
WNT signaling in human skeletal stem/progenitor cells during fracture repair. This aim uses advanced
genetics on human FD bone samples to identify the malfunctioning cell types that cause FD. We also test how
overactivating WNT4, WNT5a, or WNT9a in human skeletal stem/progenitor cells affect bone formation in a
fracture healing model. These results will identify new targets for treating FD and for promoting fracture healing.
This application address key knowledge gaps about which Wnt signaling molecules drive FD and how they
impact human osteogenesis. The proposal comes from an established, strong, collaborative, multi-institutional
team with extensive experience in GPCRs, FD, bone biology, and bone analytical methods.
1
项目总结
目前许多肌肉骨骼疾病的治疗方法往往不太理想。理解这些信号
控制骨骼的动态平衡和修复具有很高的相关性,因为这一知识对发育至关重要
对骨质疏松症和骨折等常见疾病的有效治疗。
在这项建议中,我们研究纤维异常增殖症(FD),以此作为了解人类骨形成调控因素的一种方式。
然后测试这些途径是否可以用来增强骨骼修复。FD占所有骨骼病变的2.5%
并可作为麦考恩-奥尔布赖特综合征(MAS)的一部分发生。功能性消化不良是由GNAS基因突变引起的
基因座,导致具有结构活性的Gs-GPCR蛋白,从而增加cAMP水平并导致异常
细胞信号。对这种毁容疾病的医疗治疗严重缺乏。这项提案使用新的
工具包括小鼠模型、人类诱导多能干细胞(IPSCs)、骨骼干细胞/祖细胞,
和先进的遗传策略,以解决关键的知识差距并找到治疗这些疾病的新疗法
医学上意义重大的疾病。我们提出三个具体目标:
目的1:寻找直接靶向Gs、α调节的cAMP和Wnt产生的新化合物。我们
先前表明,在小鼠中停止Gs-GPCR途径的过度活动可以极大地逆转类FD
骨头损伤。使用一种新的人工智能计算方法,我们找到了71个候选化合物
预测与GsαR201H蛋白选择性结合。初步研究表明,其中一些研究表明
预期抑制GsαR201H诱导的基础cAMP生成。这一目标使我们的顶尖候选人更进一步
表征了它们阻断cAMP和Wnt活性的能力,作为操纵GNAS的潜在分子工具。
我们还测试了先导化合物是否可以逆转小鼠颅骨培养中现有的FD损害。
目的2:检测Wnt抑制是否能预防FD小鼠的骨损伤。功能性消化不良的GNAS突变是如何引起的
戏剧性的骨形成仍然没有明确的定义。我们最近发现了三种蛋白质,Wnt4,Wnt5a和Wnt9a,
在小鼠和人类FD骨损伤中均上调。这个目的是测试阻断这些蛋白质是否可以逆转
并检测每种Wnt蛋白对FD病变病理的影响。
目的3:确定在人类FD骨损伤中调节失调的通路,并评估其作用
骨折修复过程中人骨骼干/祖细胞中的WNT信号。这一目标使用先进的
对人类FD骨骼样本进行遗传学研究,以确定导致FD的功能障碍细胞类型。我们还测试了如何
人骨骼干/祖细胞中Wnt4、Wnt5a或WNT9a的过度激活影响骨形成
骨折愈合模型。这些结果将确定治疗FD和促进骨折愈合的新靶点。
这项应用解决了关于哪些Wnt信号分子驱动FD以及它们如何驱动FD的关键知识空白
影响人类的成骨能力。该提议来自一个成熟的、强大的、协作的、多机构的
在GPCRS、FD、骨生物学和骨分析方法方面拥有丰富经验的团队。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDWARD C HSIAO其他文献
EDWARD C HSIAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDWARD C HSIAO', 18)}}的其他基金
the Gut Microbiome as a Disease Modifier of Heterotopic Ossification
肠道微生物组作为异位骨化的疾病调节剂
- 批准号:
10624949 - 财政年份:2022
- 资助金额:
$ 69.96万 - 项目类别:
Pharmacologic modulation of innate immune dysfunction in heterotopic ossification
异位骨化中先天免疫功能障碍的药物调节
- 批准号:
9767025 - 财政年份:2018
- 资助金额:
$ 69.96万 - 项目类别:
Pharmacologic modulation of innate immune dysfunction in heterotopic ossification
异位骨化中先天免疫功能障碍的药物调节
- 批准号:
10196945 - 财政年份:2018
- 资助金额:
$ 69.96万 - 项目类别:
Innate immune regulation of stem cells in bone formation
干细胞在骨形成中的先天免疫调节
- 批准号:
9134038 - 财政年份:2015
- 资助金额:
$ 69.96万 - 项目类别:
Innate immune regulation of stem cells in bone formation
干细胞在骨形成中的先天免疫调节
- 批准号:
9341896 - 财政年份:2015
- 资助金额:
$ 69.96万 - 项目类别:
Innate immune regulation of stem cells in bone formation
干细胞在骨形成中的先天免疫调节
- 批准号:
9769508 - 财政年份:2015
- 资助金额:
$ 69.96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 69.96万 - 项目类别:
Research Grant