Machine Learning for Ventricular Arrhythmias
室性心律失常的机器学习
基本信息
- 批准号:10658931
- 负责人:
- 金额:$ 65.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAffectAgeAnti-Arrhythmia AgentsArea Under CurveBasic ScienceBig DataBiologicalBiomedical EngineeringCaringClassificationClinicalClinical DataClinical SciencesClinical TrialsCombined Modality TherapyComputer ModelsComputersDataData ScienceData SetDatabasesDiabetes MellitusDiagnosticDiffusionDiseaseDizzinessElectrophysiology (science)FAIR principlesFiberFibrosisGadoliniumGeneticGenomicsHeartHeart ArrestHospitalizationImageIndividualInstitutionIntelligenceInterruptionLabelLaboratoriesLearningLesionLifeMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMethodsModelingNatural Language ProcessingPatientsPharmaceutical PreparationsPhysiciansPhysicsPopulationPopulation SciencesPredispositionRecurrenceRegistriesRiskStrategic PlanningSyncopeTestingTrainingTranslational ResearchUnited StatesUnited States National Institutes of HealthVentricular ArrhythmiaVentricular FibrillationVentricular Tachycardiaclinical imagingclinical phenotypeclinical predictorscomorbiditycomplex datacomputational pipelinesdata visualizationdiverse dataheart rhythmimprovedimproved outcomeindividual patientmachine learning predictionmortalitynon-invasive imagingnovelpersonalized medicinepredicting responsepredictive modelingpreventresponsestatisticsstructural determinantssuccesstool
项目摘要
Project Summary
Ventricular tachycardia (VT) and fibrillation are leading causes of cardiac arrest, dizziness,
syncope and hospitalization in the United States and worldwide. However, the management of patients
at risk for VT remains suboptimal despite scientific discoveries from basic to population science. In
particular, there is no framework to estimate which patients with VT are likely to respond to anti-
arrhythmic medications or ablation. Therapy is thus empirical. There is great excitement to use analysis
of “big data” to personalize VT therapy, but this has not yet improved outcomes.
This project develops a novel computational approach to personalize VT therapy that combines
machine learning in large registries with computational models. Machine learning will be applied to data
across biological scales that span bedside, laboratory and non-invasive imaging, to predict which
patients are likely to respond to therapy. Computer models will be used to estimate if a given patient's
heart is likely to support VT before versus after therapy. We will validate results in large external
registries from different Institutions. We have 3 specific aims: (1) To develop a computational pipeline to
predict response to VT ablation using bedside, laboratory and non-invasive imaging; (2) To use machine
learning of clinical data and non-invasive imaging to identify which patients with VT will respond to anti-
arrhythmic medications in a large database; (3) To combine computational approaches to estimate the
relative likelihood that a given patient will respond to various forms of therapy. Results from each Aim will
be tested in independent external registries. We will probe computational models to identify clinical
phenotypes that could be applied at the bedside.
This project will provide immediate clinical impact for patients with VT. We will combine machine
learning with physics-based computer models in large registries at Stanford and External centers. We will
reduce computational bias using FAIR methods (Findable, Accessible, Interoperable, and Reusable),
and make tools freely available per the 2018 NIH Strategic Plan for Data Science. Our team comprises
experts in clinical and basic electrophysiology, imaging, machine learning, bioengineering and statistics.
The project is very feasible.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjiv M Narayan其他文献
Sanjiv M Narayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjiv M Narayan', 18)}}的其他基金
ATRIAL FIBRILLATION AND ALTERNANS OF ACTION POTENTIAL DURATION
心房颤动和动作电位持续时间的交替
- 批准号:
8169368 - 财政年份:2010
- 资助金额:
$ 65.76万 - 项目类别:
MECH OF CONDUCTION SLOWING DURING MYOCARDIAL STRETCH BY VENT VOL LOADING
通气量负荷导致心肌舒张时传导减慢的机制
- 批准号:
8169348 - 财政年份:2010
- 资助金额:
$ 65.76万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 65.76万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 65.76万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 65.76万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 65.76万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 65.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 65.76万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 65.76万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 65.76万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 65.76万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 65.76万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




