Machine Learning in Atrial Fibrillation
心房颤动中的机器学习
基本信息
- 批准号:10594043
- 负责人:
- 金额:$ 74.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAddressAffectAlgorithmsAmericanAnatomyAreaArrhythmiaAtrial FibrillationBiologicalBiometryBiostatistical MethodsCalibrationCessation of lifeClassificationClinicalClinical DataComplexComputer ModelsConfusionDataData ElementData SetDiagnosisDiseaseDizzinessDrug ControlsElectrophysiology (science)FoundationsFundingGeneticHeartHeart AtriumHeart failureHospitalizationHumanImage AnalysisIndividualLabelLesionLinkMachine LearningMagnetic Resonance ImagingMapsMeasuresMedicineMethodsNoiseOutcomePatient CarePatientsPatternPersonsPhenotypePhysicsPhysiologicalPlayPublic HealthRecoveryRegistriesScienceSignal TransductionSiteStrokeTest ResultTestingTissuesTrainingUncertaintyUnited States National Institutes of HealthWorkcomplex datacomputer scienceconvolutional neural networkdata integrationdemographicsdigitalexperienceheart rhythmimprovedindividual patientindividualized medicineinsightmachine learning classifiermachine learning methodmortalitynovelpersonalized medicinepersonalized strategiesprospectiveprospective testresponsesignal processingsuccesstooltranslational impactvoice recognitionvoltage
项目摘要
Project Summary
Atrial fibrillation (AF) is the most common heart rhythm disorder, affecting 2 million Americans in
whom it may cause skipped heart beats, dizziness or stroke. Unfortunately, therapy for AF has limited
success, likely because AF represents heterogenous and poorly characterized disease entities between
individuals. A central challenge is that it is not clear why a specific therapy works in a given AF patient.
This uncertainty makes it challenging to develop a patient-specific approach to tailor therapy for
personalized medicine.
The premise of this project is that mechanistic data is increasingly available in AF patients at
scales spanning tissue, whole heart and patient levels, yet rarely integrated. We set out to use machine
learning (ML), a powerful approach proven to classify complex datasets, to integrate data to address 3
clinical unmet needs. First, electrograms are rarely used to guide therapy in AF, unlike organized
rhythms, because they are difficult to interpret. Second, it is difficult to understand how arrhythmia is
affected by any specific ablation strategy in AF, unlike organized rhythms. This makes it difficult to
improve therapy. Third, it is difficult to identify whether an individual patient will or will not have success
from AF ablation. We applied machine learning and novel objective analyses to these questions to
develop strategies for personalized AF therapy.
We have 3 specific aims: (1) To identify components of AF electrograms using ML trained to
monophasic action potentials (MAP); (2) To identify electrical and structural features of the acute
response of AF to ablation near and remote from PVs; (3) To identify patients in whom ablation is
unsuccessful or successful long-term, who are poorly separated at present. Each Aim will compare ML to
traditional biostatistics, and use objective explainability analysis of ML to provide mechanistic insights.
This study has potential to deliver immediate clinical and translational impact. We will apply
specific ML approaches, biostatistics, and computer modeling to our rich multiscale registry. We will
develop practical and shareable tools, which we will prospectively test clinically, to deliver meaningful
outcomes at tissue, whole heart and patient scales. Our team is experienced in electrophysiology,
computer science, signal processing and biological physics. This project is likely to reveal novel
multiscale AF phenotypes to enable personalized therapy.
项目摘要
心房纤颤(AF)是最常见的心律失常,影响200万美国人,
可能导致心跳加速头晕或中风不幸的是,房颤的治疗
成功,可能是因为AF代表了介于
个体一个核心挑战是,目前尚不清楚为什么特定的治疗在给定的AF患者中有效。
这种不确定性使得开发一种针对患者的方法来定制治疗具有挑战性,
个性化医疗
该项目的前提是,在房颤患者中,
范围涵盖组织、整个心脏和患者水平,但很少整合。我们开始使用机器
学习(ML),一种功能强大的方法,被证明可以对复杂数据集进行分类,整合数据以解决3
未满足的临床需求。首先,电描记图很少用于指导房颤治疗,
节奏,因为它们很难解释。二是难以理解心律失常是怎么回事
受房颤中任何特定消融策略的影响,不像有组织的节律。这使得难以
改善治疗。第三,很难确定单个患者是否会成功
房颤消融我们将机器学习和新颖的客观分析应用于这些问题,
制定个性化房颤治疗策略。
我们有3个具体目标:(1)使用经过培训的ML识别AF电描记图的组成部分,
单相动作电位(MAP):(2)确定急性心肌梗死的电和结构特征,
房颤对肺静脉附近和远处消融的反应;(3)识别消融的患者
不成功或成功的长期,谁是目前分离不良。每个目标将ML与
传统的生物统计学,并使用ML的客观可解释性分析来提供机械见解。
这项研究有可能产生直接的临床和翻译影响。我们将应用
具体的机器学习方法,生物统计学和计算机建模,我们丰富的多尺度注册表。我们将
开发实用和可共享的工具,我们将在临床上进行前瞻性测试,
组织、整个心脏和患者规模的结果。我们的团队在电生理学方面经验丰富,
计算机科学、信号处理和生物物理学。该项目可能会揭示新的
多尺度AF表型,以实现个性化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjiv M Narayan其他文献
Sanjiv M Narayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjiv M Narayan', 18)}}的其他基金
ATRIAL FIBRILLATION AND ALTERNANS OF ACTION POTENTIAL DURATION
心房颤动和动作电位持续时间的交替
- 批准号:
8169368 - 财政年份:2010
- 资助金额:
$ 74.22万 - 项目类别:
MECH OF CONDUCTION SLOWING DURING MYOCARDIAL STRETCH BY VENT VOL LOADING
通气量负荷导致心肌舒张时传导减慢的机制
- 批准号:
8169348 - 财政年份:2010
- 资助金额:
$ 74.22万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 74.22万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 74.22万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 74.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 74.22万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 74.22万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 74.22万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 74.22万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 74.22万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 74.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




