Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
基本信息
- 批准号:10661778
- 负责人:
- 金额:$ 40.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisAutosomal Dominant Optic AtrophyBedsBiophysical ProcessCalcium SignalingCardiacCardiac healthCell physiologyCellsComplexComputer AnalysisCrista ampullarisCryo-electron tomographyCryoelectron MicroscopyDependenceDiseaseElementsEncephalopathiesEnvironmentFamilyFoundationsGoalsHeart MitochondriaHeterogeneityHomeostasisIn VitroInner mitochondrial membraneKnowledgeLeigh DiseaseLipidsLiposomesLiver diseasesMalignant NeoplasmsMembraneMembrane ProteinsMetabolicMetabolismMitochondriaModelingMolecular ConformationMorphologyMutateNatureNerve DegenerationOPA1 geneOrganellesPhysiologicalPhysiologyPlayProductionPropertyProtein ConformationProteinsRegulationResolutionRoleShapesStructureSystemTestingTissuesVisualizationbiophysical techniquescomputational pipelinesearly onsetinterestmembermembrane reconstitutionmitochondrial membranenervous system disorderparticleprogramsprotein complexprotein protein interactionprotein structurereconstitutionsolutetargeted treatmenttherapeutic developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
Organelle morphology is specialized for the highly adapted functions found in complex tissues. Mitochondrial
ultrastructure is exquisitely tuned to metabolic and physiological state. Abnormal morphology is a hallmark of
neurological disorders, cardiac conditions and cancer. With the cryo-EM `resolution revolution', we have
developed dramatic new understanding of membrane protein structure and regulation, but our knowledge of
organelle structure lags behind. This is due to the pleomorphic nature of organelles, and the challenge of
assigning specific morphological features to protein states. The overarching goals of my lab are to understand,
at a mechanistic level, how protein conformational change is influenced by subcellular context, how membrane
ultrastructure is regulated by protein factors, and the functional interplay of these elements in physiology and
disease. Over the next five years, my group will develop a technical platform that combines electron cryo-
microscopy (cryo-EM) and biophysical methods to study mitochondrial ultrastructure and its regulation. We will
apply our recent developed in vitro reconstitution systems to visualize reconstituted membrane proteins in
liposomes and bilayers by single-particle cryo-EM. We will mature our newly established electron cryo-
tomography (cryo-ET) pipeline for computational analyses of membrane properties to understand their
dependence on protein-protein interactions. We shall develop new structural and biophysical methods to
characterize organelle lipid heterogeneity. And finally, we will explore assembly or protein complexes in native
contexts. Together these approaches will advance mechanistic understanding of protein conformational state
and help us identify the fundamental determinants of organelle shape. We are broadly interested in questions
of membrane spacing, composition and curvature. We will develop tools precisely tailored for these questions
using mitochondria as a test bed, exploring the structure and function of candidate factors that regulate
mitochondrial membrane morphology, which play causal roles in neurodegenerative conditions. Opa1 is the
inner-membrane fusogen and cristae remodeler mutated in Dominant Optic Atrophy. SLC25A46 is an outer-
membrane member of the solute transporter family that plays important roles in coordinating lipid homeostasis
in Leigh Syndrome. MICOS is the stabilizer and regulator of cristae junctions (the `choke-point' to the
mitochondrial inner-membrane folds) whose loss results in early-onset fatal mitochondrial encephalopathy with
liver disease. This project's immediate impacts include sharing new models to understand mitochondrial shape
with cell biologists, equipping pharmacologists with new, highly specific conformational targets for therapeutic
development, and providing physiologists with fundamental rules for understanding tissue specialization. The
long-term goal is to build an extensible approach generalizable to other organelles, and a foundation for
rational control of organelle morphology from first principles.
项目概要/摘要
细胞器形态专门用于复杂组织中发现的高度适应的功能。线粒体
超微结构根据代谢和生理状态进行精确调整。形态异常是其标志
神经系统疾病、心脏病和癌症。随着冷冻电镜“分辨率革命”的到来,我们已经
对膜蛋白结构和调节产生了戏剧性的新理解,但我们的知识
细胞器结构落后。这是由于细胞器的多形性,以及
将特定的形态特征分配给蛋白质状态。我实验室的首要目标是了解,
在机制水平上,蛋白质构象变化如何受到亚细胞环境的影响,膜如何
超微结构受蛋白质因子调节,这些元素在生理和功能上的功能相互作用
疾病。未来五年,我的团队将开发一个结合电子冷冻技术的技术平台
显微镜(冷冻电镜)和生物物理方法研究线粒体超微结构及其调节。我们将
应用我们最近开发的体外重建系统来可视化重建的膜蛋白
通过单颗粒冷冻电镜观察脂质体和双层。我们将使我们新建立的电子冷冻技术成熟起来
断层扫描 (cryo-ET) 管道,用于对膜特性进行计算分析,以了解其特性
依赖于蛋白质-蛋白质相互作用。我们将开发新的结构和生物物理方法
表征细胞器脂质异质性。最后,我们将探索天然的组装或蛋白质复合物
上下文。这些方法将共同促进对蛋白质构象状态的机械理解
并帮助我们确定细胞器形状的基本决定因素。我们对问题广泛感兴趣
膜间距、成分和曲率。我们将开发专门针对这些问题定制的工具
使用线粒体作为试验台,探索调节候选因子的结构和功能
线粒体膜形态,在神经退行性疾病中发挥因果作用。 Opa1 是
显性视神经萎缩中内膜融合剂和嵴重塑剂发生突变。 SLC25A46是一个外
溶质转运蛋白家族的膜成员,在协调脂质稳态中发挥重要作用
在利氏综合症中。 MICOS 是嵴连接处的稳定器和调节器(“阻塞点”)
线粒体内膜褶皱),其缺失会导致早发性致命性线粒体脑病
肝脏疾病。该项目的直接影响包括共享新模型以了解线粒体形状
与细胞生物学家合作,为药理学家提供新的、高度特异性的治疗构象靶标
发育,并为生理学家提供理解组织特化的基本规则。这
长期目标是建立一种可推广到其他细胞器的可扩展方法,并为
从第一原理合理控制细胞器形态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke H. Chao其他文献
Visualizing Opa1-Mediated Changes to Inner Mitochondrial Membrane Morphology
- DOI:
10.1016/j.bpj.2019.11.1371 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Julie L. McDonald;Yifan Ge;Paula P. Navarro;Luke H. Chao - 通讯作者:
Luke H. Chao
Contemporary insights into elamipretide’s mitochondrial mechanism of action and therapeutic effects
依拉米肽线粒体作用机制及治疗效果的当代见解
- DOI:
10.1016/j.biopha.2025.118056 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Hani N. Sabbah;Nathan N. Alder;Genevieve C. Sparagna;James E. Bruce;Brian L. Stauffer;Luke H. Chao;Robert D.S. Pitceathly;Christoph Maack;David J. Marcinek - 通讯作者:
David J. Marcinek
Luke H. Chao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke H. Chao', 18)}}的其他基金
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10809205 - 财政年份:2021
- 资助金额:
$ 40.98万 - 项目类别:
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10273815 - 财政年份:2021
- 资助金额:
$ 40.98万 - 项目类别:
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10580242 - 财政年份:2021
- 资助金额:
$ 40.98万 - 项目类别:
相似海外基金
Ophthalmological and systemic investigations of autosomal dominant optic atrophy with OPA1 mutations.
伴有 OPA1 突变的常染色体显性视神经萎缩的眼科和系统研究。
- 批准号:
26462674 - 财政年份:2014
- 资助金额:
$ 40.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The OPA1 gene mutations in patients with autosomal dominant optic atrophy and associated morphological and physiological changes.
常染色体显性视神经萎缩患者的 OPA1 基因突变及相关形态和生理变化。
- 批准号:
16591746 - 财政年份:2004
- 资助金额:
$ 40.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




