Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
基本信息
- 批准号:10809205
- 负责人:
- 金额:$ 1.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisAutosomal Dominant Optic AtrophyBedsBiophysical ProcessCalcium SignalingCardiacCardiac healthCell physiologyCellsComplexComputer AnalysisCrista ampullarisCryo-electron tomographyCryoelectron MicroscopyDependenceDiseaseElementsEncephalopathiesEnvironmentFamilyFoundationsGoalsHeart MitochondriaHeterogeneityHomeostasisIn VitroInner mitochondrial membraneKnowledgeLeigh DiseaseLipidsLiposomesLiver diseasesMalignant NeoplasmsMembraneMembrane ProteinsMetabolicMetabolismMitochondriaModelingMolecular ConformationMorphologyMutateNatureNerve DegenerationOPA1 geneOrganellesPhysiologicalPhysiologyPlayProductionPropertyProtein ConformationProteinsRegulationResolutionRoleShapesStructureSystemTestingTissuesVisualizationbiophysical techniquescomputational pipelinesearly onsetinterestmembermembrane reconstitutionmitochondrial membranenervous system disorderparticleprogramsprotein complexprotein protein interactionprotein structurereconstitutionsolutetargeted treatmenttherapeutic developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
Organelle morphology is specialized for the highly adapted functions found in complex tissues. Mitochondrial
ultrastructure is exquisitely tuned to metabolic and physiological state. Abnormal morphology is a hallmark of
neurological disorders, cardiac conditions and cancer. With the cryo-EM `resolution revolution', we have
developed dramatic new understanding of membrane protein structure and regulation, but our knowledge of
organelle structure lags behind. This is due to the pleomorphic nature of organelles, and the challenge of
assigning specific morphological features to protein states. The overarching goals of my lab are to understand,
at a mechanistic level, how protein conformational change is influenced by subcellular context, how membrane
ultrastructure is regulated by protein factors, and the functional interplay of these elements in physiology and
disease. Over the next five years, my group will develop a technical platform that combines electron cryo-
microscopy (cryo-EM) and biophysical methods to study mitochondrial ultrastructure and its regulation. We will
apply our recent developed in vitro reconstitution systems to visualize reconstituted membrane proteins in
liposomes and bilayers by single-particle cryo-EM. We will mature our newly established electron cryo-
tomography (cryo-ET) pipeline for computational analyses of membrane properties to understand their
dependence on protein-protein interactions. We shall develop new structural and biophysical methods to
characterize organelle lipid heterogeneity. And finally, we will explore assembly or protein complexes in native
contexts. Together these approaches will advance mechanistic understanding of protein conformational state
and help us identify the fundamental determinants of organelle shape. We are broadly interested in questions
of membrane spacing, composition and curvature. We will develop tools precisely tailored for these questions
using mitochondria as a test bed, exploring the structure and function of candidate factors that regulate
mitochondrial membrane morphology, which play causal roles in neurodegenerative conditions. Opa1 is the
inner-membrane fusogen and cristae remodeler mutated in Dominant Optic Atrophy. SLC25A46 is an outer-
membrane member of the solute transporter family that plays important roles in coordinating lipid homeostasis
in Leigh Syndrome. MICOS is the stabilizer and regulator of cristae junctions (the `choke-point' to the
mitochondrial inner-membrane folds) whose loss results in early-onset fatal mitochondrial encephalopathy with
liver disease. This project's immediate impacts include sharing new models to understand mitochondrial shape
with cell biologists, equipping pharmacologists with new, highly specific conformational targets for therapeutic
development, and providing physiologists with fundamental rules for understanding tissue specialization. The
long-term goal is to build an extensible approach generalizable to other organelles, and a foundation for
rational control of organelle morphology from first principles.
项目总结/文摘
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In situ architecture of Opa1-dependent mitochondrial cristae remodeling.
Opa1 依赖性线粒体嵴重塑的原位结构。
- DOI:10.1101/2023.01.16.524176
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fry,MichelleY;Navarro,PaulaP;Hakim,Pusparanee;Ananda,VirlyY;Qin,Xingping;Landoni,JuanC;Rath,Sneha;Inde,Zintis;Lugo,CamilaMakhlouta;Luce,BridgetE;Ge,Yifan;McDonald,JulieL;Ali,Ilzat;Ha,LeillaniL;Kleinstiver,BenjaminP;C
- 通讯作者:C
Absence of Cardiolipin From the Outer Leaflet of a Mitochondrial Inner Membrane Mimic Restricts Opa1-Mediated Fusion.
- DOI:10.3389/fmolb.2021.769135
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Ge Y;Boopathy S;Nguyen TH;Lugo CM;Chao LH
- 通讯作者:Chao LH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke H. Chao其他文献
Visualizing Opa1-Mediated Changes to Inner Mitochondrial Membrane Morphology
- DOI:
10.1016/j.bpj.2019.11.1371 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Julie L. McDonald;Yifan Ge;Paula P. Navarro;Luke H. Chao - 通讯作者:
Luke H. Chao
Contemporary insights into elamipretide’s mitochondrial mechanism of action and therapeutic effects
依拉米肽线粒体作用机制及治疗效果的当代见解
- DOI:
10.1016/j.biopha.2025.118056 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Hani N. Sabbah;Nathan N. Alder;Genevieve C. Sparagna;James E. Bruce;Brian L. Stauffer;Luke H. Chao;Robert D.S. Pitceathly;Christoph Maack;David J. Marcinek - 通讯作者:
David J. Marcinek
Luke H. Chao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke H. Chao', 18)}}的其他基金
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10661778 - 财政年份:2021
- 资助金额:
$ 1.43万 - 项目类别:
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10273815 - 财政年份:2021
- 资助金额:
$ 1.43万 - 项目类别:
Probing structural and biophysical mechanisms of mitochondrial membrane ultrastructure
探究线粒体膜超微结构的结构和生物物理机制
- 批准号:
10580242 - 财政年份:2021
- 资助金额:
$ 1.43万 - 项目类别:
相似海外基金
Ophthalmological and systemic investigations of autosomal dominant optic atrophy with OPA1 mutations.
伴有 OPA1 突变的常染色体显性视神经萎缩的眼科和系统研究。
- 批准号:
26462674 - 财政年份:2014
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The OPA1 gene mutations in patients with autosomal dominant optic atrophy and associated morphological and physiological changes.
常染色体显性视神经萎缩患者的 OPA1 基因突变及相关形态和生理变化。
- 批准号:
16591746 - 财政年份:2004
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)