Deployment of a Mobile Broadband BCI

移动宽带 BCI 的部署

基本信息

  • 批准号:
    10661494
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

1 Intracortical neural interfaces, which record and analyze streams of neural signals recorded 2 from arrays of electrodes implanted in the brain, can enable fast, accurate, intuitive control of 3 enabling assistive technologies for individuals with paralysis arising from spinal cord injury as 4 well as other neurological conditions including stroke and ALS. Individuals with tetraplegia in the 5 pilot clinical trial of the BrainGate (IDE*) intracortical neural interface system use imagined 6 movements of their own paralyzed hand and arm to command point-and-click with a computer 7 cursor (on-screen typing, communication apps such as chat, web browsing) and to control 8 assistive devices including the DEKA prosthetic arm/hand, assistive robots and even reach and 9 grasp with one’s own paralyzed limb reanimated through patterned stimulation of the paralyzed 10 muscles. These BrainGate activities take place in study participants’ homes, but the need for a 11 recording cable tethered between the participant and a large rack of signal processing 12 computers dictates that the iBCI can only be used under direct technical supervision during 13 dedicated research periods. However, with the recent availability of a high-bandwidth, miniature 14 wireless neural signal transmitter (to eliminate the tethering cable) and a state-of-the-art 15 compact signal processing device with sufficient computational resources to execute the 16 BrainGate algorithms, the components are available to enable trial participants and caregivers 17 to use and administer a wireless, mobile intracortical brain-computer interface (iBCI) at home to 18 enable on-demand digital access throughout day and night and throughout the home. 19 This study aims to evaluate the feasibility and utility of an iBCI deployed in a mobile package 20 for independent use at home without technical supervision. In addition to evaluating the new 21 mobile platform, this will demonstrate the first-ever in-home use of an intracortical BCI without 22 direct technical oversight. End users and caregivers will be trained to configure and operate the 23 iBCI. With the iBCI mounted to their wheelchair and a chair-mounted consumer tablet, end 24 users with tetraplegia will be able to use their own imagined arm and hand movements to 25 control familiar tablet “apps” on demand anywhere in the home. Moving the mobile iBCI to the 26 bedside will enable tablet use from bed or neural signal monitoring through the night. 27 Before deployment, the current prototype mobile iBCI - developed in recent VA funded 28 research - will be provisioned with the most recent state-of-the-art signal processing and neural 29 decoding algorithms developed in the BrainGate pilot clinical trial. This will involve translating 30 those real-time software algorithms into hardware description language to program the ultra- 31 low-power System-on-Chip device. Recent algorithms to be incorporated will enable rapid, 32 automatic calibration of the BCI without expert intervention; maintain calibration over longer 33 periods of time to reduce the need for explicit recalibration steps; and improve the speed and 34 accuracy of cursor trajectories derived from the user’s neural signals. Each of three users will 35 evaluate the system over a continuous 5 to 10 day period, and repeat the home assessment in 36 at least 3 consecutive months. Throughout, the technical operation of the BCI system and the 37 BrainGate algorithms will be monitored and evaluated quantitatively. In addition, user and 38 caregivers will complete questionnaires measuring their evolving satisfaction with the system 39 and its utility. Analyses of these cumulative data will inform future device improvements. 40 *CAUTION:Investigational Device.Limited by Federal (United States) Law to Investigational Use
1皮质内神经接口,记录和分析记录的神经信号流 2.从植入大脑的电极阵列中,可以实现快速、准确、直观的控制, 3为因脊髓损伤而瘫痪的个人提供辅助技术, 4以及其他神经系统疾病,包括中风和ALS。四肢瘫痪的个体 BrainGate(IDE*)皮质内神经接口系统的5项试点临床试验使用想象 6运动自己瘫痪的手和手臂命令点和点击与计算机 7光标(屏幕上打字,通信应用程序,如聊天,网页浏览)和控制 8种辅助设备,包括DEKA假肢/手、辅助机器人,甚至是伸手和 9用自己瘫痪的肢体抓握,通过对瘫痪者进行模式化刺激而使其复活 10块肌肉这些BrainGate活动发生在研究参与者的家中,但需要一个 11记录电缆系在参与者和信号处理的大机架之间 12台计算机规定,iBCI只能在直接技术监督下使用, 13篇专题研究然而,随着最近高带宽、微型 14个无线神经信号发射器(以消除系绳电缆)和最先进的 15具有足够的计算资源以执行所述信号处理的紧凑的信号处理设备。 16 BrainGate算法,组件可用于使试验参与者和护理人员 17在家中使用和管理无线、移动的皮质内脑机接口(iBCI), 18个可在白天和夜晚以及整个家庭中实现按需数字访问。 本研究旨在评估在移动的包中部署iBCI的可行性和实用性 20在家中独立使用,无需技术监督。除了评估新的 21移动的平台,这将展示首次在家中使用皮质内BCI, 22技术监督最终用户和护理人员将接受培训,以配置和操作 23 iBCI。随着iBCI安装在他们的轮椅和椅子上安装的消费者平板电脑上, 24名四肢瘫痪的用户将能够使用他们自己想象的手臂和手部动作, 25控制熟悉的平板电脑“应用程序”的需求在家里的任何地方。将移动的iBCI移动到 26床边将使平板电脑使用从床上或神经信号监测通过夜间. 27在部署之前,目前的移动的iBCI原型-在最近的VA资助下开发 28研究-将提供最新的最先进的信号处理和神经 在BrainGate试点临床试验中开发的29种解码算法。这将涉及翻译 30那些实时的软件算法转换成硬件描述语言来编程超 31低功耗片上系统器件。最近的算法将被纳入, 32无需专家干预的BCI自动校准;保持校准更长时间 33个周期的时间,以减少明确的重新校准步骤的需要;并提高速度和 34从用户的神经信号导出的光标轨迹的准确性。三个用户将 35在连续5至10天的时间内对系统进行评估,并在 36、连续三个月。在整个过程中,BCI系统的技术操作和 将对37种BrainGate算法进行监测和定量评价。此外,用户和 38名护理人员将完成调查问卷,衡量他们对该系统的满意度 39、它的用处对这些累积数据的分析将为未来的器械改进提供信息。 40 * 说明:试验用器械。受联邦(美国)法律限制,仅用于试验

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John David Simeral其他文献

John David Simeral的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John David Simeral', 18)}}的其他基金

Enhancement and optimization of a mobile iBCI for Veterans with paralysis
为瘫痪退伍军人增强和优化移动 iBCI
  • 批准号:
    10538008
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Enhancement and optimization of a mobile iBCI for Veterans with paralysis
为瘫痪退伍军人增强和优化移动 iBCI
  • 批准号:
    10674504
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deployment of a Mobile Broadband BCI
移动宽带 BCI 的部署
  • 批准号:
    10339314
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    9000722
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    8597512
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    9186959
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
  • 批准号:
    133416
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
  • 批准号:
    0916351
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了