Enhancement and optimization of a mobile iBCI for Veterans with paralysis

为瘫痪退伍军人增强和优化移动 iBCI

基本信息

  • 批准号:
    10674504
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Intracortical brain-computer interfaces (iBCIs) record and process neural signals streaming from arrays of electrodes implanted in the cortex to enable fast, accurate and intuitive control of assistive technologies for individuals living with paralysis arising from spinal cord injury, stroke, or amyotrophic lateral sclerosis (ALS). Using an intracortical BCI, people with tetraplegia have been able to use their imagined hand movements to command point-and-click actions on a computer, type with a virtual keyboard, use communication apps such as chat, and browse the web. Imagined movements have also been used to control assistive devices including the DEKA prosthetic arm, assistive robotic arms and even one’s own paralyzed limb through patterned electrical stimulation of paralyzed muscles. Recent development of a miniature wireless signal transmitter and a wireless, compact, battery-operated neural signal processor has raised the potential for individuals with severe motor disability to use a wheelchair-mounted iBCI independently at home without technical assistance. To be a viable assistive technology, the iBCI must be not only mobile but also high-performance, reliable, and intuitive to use. This research enhances all of these aspects of a mobile iBCI by translating algorithmic innovations demonstrated in varied pre-clinical studies and optimizing them toward stable, high-performance decoding in a mobile iBCI. This research first transforms a highly accurate and responsive kinematic neural decoder (a deep learning recursive neural network) to run on the mobile iBCI’s computationally powerful embedded hardware. To help stabilize kinematic decoding over time, enhance performance, and ease calibration requirements, this research then looks to theories of intrinsic neural manifolds to adapt dimensionality reduction (DR) techniques to high- dimensional, multiscale human neural data. Next, state-of-the-art data science approaches are integrated with multiclass analyses to promote reliable, accurate classification of a large set of discrete hand gestures imagined by iBCI users. Next, DR methods are evaluated to disentangle simultaneous kinematic and gesture decoding for smoother, more accurate and unperturbed iBCI control. These cumulative approaches will be translated to embedded hardware form to run on the powerful mobile processor to provide on-demand control of mobile and touch-enabled devices using both mouse-like movements and gestures (such as swipe-to-scroll and pinch-to zoom). Mapping unique gestures to additional functions will instantly activate key shortcuts or gesture-to-phrase output. Using this wheelchair-mounted iBCI, a speech-disabled individual could imagine a hand gesture to generate a text-to-speech greeting or call for help. Overall, this research leverages state-of-the-art machine learning innovations toward a more capable, reliable, and versatile iBCI to promote independence for people with severe motor disability.
皮质内脑-计算机接口(IBCI)记录和处理来自 植入大脑皮层的电极阵列,能够快速、准确和直观地控制 为因脊髓损伤、中风而瘫痪的患者提供辅助技术, 或肌萎缩侧索硬化症(ALS)。使用皮质内脑机接口,四肢瘫痪患者 能够使用他们想象中的手部动作来命令在 计算机,使用虚拟键盘打字,使用聊天等通信应用程序,以及浏览 网络。想象中的动作也被用来控制辅助设备,包括DEKA 假臂,辅助机械臂,甚至是自己瘫痪的肢体 对瘫痪肌肉的电刺激。微型无线信号的最新发展 发射器和无线、紧凑、电池供电的神经信号处理器提高了 严重运动障碍患者使用轮椅安装的IBCI的潜力 在没有技术援助的情况下在家里独立工作。要成为一项可行的辅助技术, IBCI不仅必须是移动性的,而且必须是高性能、可靠和直观的。这 研究通过转换算法创新来增强移动IBCI的所有这些方面 在各种临床前研究中展示,并优化它们以实现稳定、高性能 在移动IBCI中进行解码。这项研究首先将高度准确和灵敏的 运行在移动IBCI上的运动学神经解码器(深度学习递归神经网络) 计算能力强大的嵌入式硬件。为了帮助随着时间的推移稳定运动学解码, 提高性能,并简化校准要求,这项研究然后着眼于 本征神经流形使降维(DR)技术适用于 多维、多尺度人类神经数据。接下来,最先进的数据科学方法是 与多类分析集成,以促进对大量数据集的可靠、准确分类 IBCI用户想象的离散手势。接下来,对灾难恢复方法进行评估以解开 同时进行运动学和手势解码,实现更流畅、更准确和不受干扰 IBCI控制中心。这些累积的方法将被转换为嵌入式硬件形式运行 在功能强大的移动处理器上提供按需控制移动和触控 同时使用类似鼠标的移动和手势的设备(如滑动到滚动和捏到 缩放)。将独特的手势映射到其他功能将立即激活快捷键或 手势到短语输出。使用这个安装在轮椅上的IBCI,一个言语残疾的人 可以想象一个手势来生成文本到语音的问候或求救。总体而言,这 研究利用最先进的机器学习创新来实现更有能力、 可靠、多功能的IBCI可促进严重运动障碍患者的独立性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John David Simeral其他文献

John David Simeral的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John David Simeral', 18)}}的其他基金

Enhancement and optimization of a mobile iBCI for Veterans with paralysis
为瘫痪退伍军人增强和优化移动 iBCI
  • 批准号:
    10538008
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deployment of a Mobile Broadband BCI
移动宽带 BCI 的部署
  • 批准号:
    10339314
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Deployment of a Mobile Broadband BCI
移动宽带 BCI 的部署
  • 批准号:
    10661494
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    9000722
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    8597512
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
  • 批准号:
    9186959
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了