Enhancement and optimization of a mobile iBCI for Veterans with paralysis
为瘫痪退伍军人增强和优化移动 iBCI
基本信息
- 批准号:10538008
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAlgorithmsAmyotrophic Lateral SclerosisArtificial ArmCalibrationClassificationClinicalCommunicationComputer softwareComputersDataData ScienceDevelopmentDevicesDimensionsDisabled PersonsElectric StimulationEvaluationExhibitsFingersGesturesGoalsHandHomeHumanImageryImplanted ElectrodesIndividualInternetIntuitionLimb structureLinkMachine LearningMethodsMotorMotor CortexMovementMusMuscleNeurofibrillary TanglesNon-linear ModelsOutcomeOutputParalysedParticipantPatternPerformancePersonsPrecentral gyrusProcessQuadriplegiaReportingResearchRunningSamplingSelf-Help DevicesSignal TransductionSpeechSpeedSpinal cord injuryStreamStrokeSupervisionTabletsTechniquesTechnologyTextTimeTouch sensationTranslatingUpper ExtremityUser-Computer InterfaceVeteransWheelchairsarmassistive robotautoencoderbrain computer interfacedeep learningdeep neural networkdisabilityfeature extractionfinger movementhandheld mobile devicehigh dimensionalityimprovedinnovationinterestkinematicslong short term memorymarkov modelmobile applicationneurotransmissionphrasespreclinical studyprototyperecurrent neural networkrecursive neural networkrelating to nervous systemsimulationtheoriestwo-dimensionalvirtualwireless
项目摘要
Intracortical brain-computer interfaces (iBCIs) record and process neural signals streaming from
arrays of electrodes implanted in the cortex to enable fast, accurate and intuitive control of
assistive technologies for individuals living with paralysis arising from spinal cord injury, stroke,
or amyotrophic lateral sclerosis (ALS). Using an intracortical BCI, people with tetraplegia have
been able to use their imagined hand movements to command point-and-click actions on a
computer, type with a virtual keyboard, use communication apps such as chat, and browse the
web. Imagined movements have also been used to control assistive devices including the DEKA
prosthetic arm, assistive robotic arms and even one’s own paralyzed limb through patterned
electrical stimulation of paralyzed muscles. Recent development of a miniature wireless signal
transmitter and a wireless, compact, battery-operated neural signal processor has raised the
potential for individuals with severe motor disability to use a wheelchair-mounted iBCI
independently at home without technical assistance. To be a viable assistive technology, the
iBCI must be not only mobile but also high-performance, reliable, and intuitive to use. This
research enhances all of these aspects of a mobile iBCI by translating algorithmic innovations
demonstrated in varied pre-clinical studies and optimizing them toward stable, high-performance
decoding in a mobile iBCI. This research first transforms a highly accurate and responsive
kinematic neural decoder (a deep learning recursive neural network) to run on the mobile iBCI’s
computationally powerful embedded hardware. To help stabilize kinematic decoding over time,
enhance performance, and ease calibration requirements, this research then looks to theories of
intrinsic neural manifolds to adapt dimensionality reduction (DR) techniques to high-
dimensional, multiscale human neural data. Next, state-of-the-art data science approaches are
integrated with multiclass analyses to promote reliable, accurate classification of a large set of
discrete hand gestures imagined by iBCI users. Next, DR methods are evaluated to disentangle
simultaneous kinematic and gesture decoding for smoother, more accurate and unperturbed
iBCI control. These cumulative approaches will be translated to embedded hardware form to run
on the powerful mobile processor to provide on-demand control of mobile and touch-enabled
devices using both mouse-like movements and gestures (such as swipe-to-scroll and pinch-to
zoom). Mapping unique gestures to additional functions will instantly activate key shortcuts or
gesture-to-phrase output. Using this wheelchair-mounted iBCI, a speech-disabled individual
could imagine a hand gesture to generate a text-to-speech greeting or call for help. Overall, this
research leverages state-of-the-art machine learning innovations toward a more capable,
reliable, and versatile iBCI to promote independence for people with severe motor disability.
皮质内脑机接口(IBCI)记录和处理来自大脑皮层的神经信号流。
植入大脑皮层的电极阵列能够快速、准确和直观地控制
为因脊髓损伤、中风
或肌萎缩侧索硬化症(ALS)。使用皮质内脑机接口,四肢瘫痪的人
能够使用他们想象的手部动作来命令在一个
电脑,使用虚拟键盘打字,使用聊天等通信应用程序,并浏览
web.想象的运动也被用来控制辅助设备,包括DEKA
假肢,辅助机械臂,甚至是一个人自己的瘫痪肢体,
电刺激麻痹的肌肉。一种微型无线信号的研究进展
发射器和无线,紧凑,电池供电的神经信号处理器已经提高了
有严重运动障碍的个人使用轮椅安装iBCI的可能性
在没有技术支持的情况下,在家独立工作。作为一种可行的辅助技术,
iBCI不仅必须是移动的,而且必须是高性能、可靠和直观的。这
研究通过将算法创新转化为技术创新,增强了移动的iBCI的所有这些方面
在各种临床前研究中得到证实,并将其优化为稳定、高性能
在移动的iBCI中解码。这项研究首先将一个高度准确和反应灵敏的
在移动的iBCI上运行的运动神经解码器(深度学习递归神经网络)
强大的嵌入式硬件。为了帮助稳定运动解码随着时间的推移,
提高性能,并简化校准要求,本研究然后期待的理论,
内在的神经流形,以适应降维(DR)技术,以高-
多维多尺度人类神经数据。接下来,最先进的数据科学方法是
与多类分析相结合,以促进对大量
iBCI用户想象的离散手势。接下来,对DR方法进行评估,
同时进行运动学和手势解码,实现更平滑、更准确和更稳定
iBCI控制。这些累积的方法将被转换为嵌入式硬件形式来运行
在强大的移动的处理器上,提供对移动的和支持触摸的
使用类似鼠标的移动和手势(例如滑动滚动和捏动
zoom)。将独特的手势映射到其他功能将立即激活键快捷键或
手势到短语输出。使用这种安装在轮椅上的iBCI,
可以想象一个手势来生成文本到语音的问候或求助。总体而言,这
研究利用最先进的机器学习创新来实现更有能力、
可靠、多功能的iBCI,以促进重度运动障碍患者的独立性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John David Simeral其他文献
John David Simeral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John David Simeral', 18)}}的其他基金
Enhancement and optimization of a mobile iBCI for Veterans with paralysis
为瘫痪退伍军人增强和优化移动 iBCI
- 批准号:
10674504 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
- 批准号:
9000722 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
- 批准号:
8597512 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Mobile Signal Processing System for Broadband Neural Decoding
用于宽带神经解码的移动信号处理系统
- 批准号:
9186959 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




