Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
基本信息
- 批准号:10669960
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-09-16
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAccelerationAddressArchitectureArtificial LiverArtificial tissueBiocompatible MaterialsBiologicalBiomedical EngineeringBioreactorsBlood VesselsBlood capillariesCellular biologyCessation of lifeClinicalCollaborationsDataDiameterDiseaseEngineeringEngraftmentFormulationGenerationsGoalsGrowthHeart DiseasesHepaticHepatocyteHepatologyHumanIn SituInkKidney DiseasesLibrariesLifeLiverLiver FailureLiver diseasesLobuleMeasuresMedicalMethodsMusNatural regenerationOperative Surgical ProceduresOrganOrgan TransplantationOsteogenesisPancreatic DiseasesPatientsPatternPhysiologyPrintingProtein BiosynthesisPublic HealthResearchResolutionRoleRouteTechnologyTestingTherapeuticTissue EngineeringTissuesTransplantationVascularizationWorkbioinkbioprintingdensitydrug metabolismfallshepatocyte engraftmentimplantationimprovedin vivoin vivo engraftmentinjuredinnovationinterstitialliver injuryliver metabolismliver transplantationmetermultidisciplinarynovel strategiesnovel therapeuticsregenerative growthscale upself assemblysupport networkvascular tissue engineering
项目摘要
Project Summary/Abstract
Liver disease is a pressing public health challenge, because unlike most other major killers deaths due
to liver disease are rapidly rising rather than falling. Although liver transplantation prolongs survival, there is a
growing number of patients in need of transplant, but donor supply has remained stagnant. To address this major
medical problem, we are working to build artificial liver tissue that could serve as a bridge or alterative to organ
transplant. A crucial remaining hurdle for developing artificial liver tissue is building the multiscale vasculature
needed to support billions of densely packed hepatocytes. Novel approaches that address this challenge would
transform liver research and therapy.
Our recent work pushed the field closer to addressing this hurdle by introducing a breakthrough method
for 3D printing volumetric vascular networks in artificial tissues. This advance was made possible by addition of
photoabsorbers to stereolithography bioinks, which enabled millions of voxels to be patterned over many tissue
layers. Yet, tissues produced with stereolithography remain incompletely vascularized and sparsely cellularized,
with functional levels that still fall short of those needed for therapy. We have recently gained important clues
towards addressing this challenge. First, we identified new photoabsorber formulations that substantively
improve print resolution, providing a new route to volumetrically scaling a denser vasculature. Furthermore, we
found that adding biological matrices to bioinks allows us “expand” vasculature and hepatocytes within printed
tissues after implantation in the body to produce tissues with native density. These data lead us to hypothesize
that dual-role bioinks that support both technical and biological modes of scale-up will facilitate generation of
human liver tissue with volumetric vasculature that expands in vivo. Further, such tissue will have hepatic
functional levels sufficient to therapeutically treat liver disease. To test these hypotheses, we established a team
with synergistic expertise in liver and vascular tissue engineering, biomaterials and bioprinting, clinical liver
surgery, clinical hepatology, liver cell biology, and liver metabolism. We will employ our expertise to develop
vascularized bioprinted liver tissue that grows in the body. We will first formulate a new library of bioinks for
projection stereolithography with improved print resolution and bioactivity, to facilitate both 3D printing and in
vivo tissue engineering (Aim 1). We will then 3D print scaled vascular topologies that mimic liver vasculature and
support hepatocyte engraftment (Aim 2). Finally, we will trigger hepatocyte expansion in the tissues to achieve
hepatocyte density and functional levels sufficient to rescue mice with liver injury (Aim 3).
The real power of this proposal lies in conflating bioprinting and biological modes of tissue scale-up,
which will transform tissue engineering and generate bioprinted liver tissue as a new therapy for liver disease.
The new material bioinks and 3D printing innovations developed in proposal would also be broadly useful across
diverse fields of translational biomedicine, such as heart and kidney disease.
项目概要/摘要
肝脏疾病是一个紧迫的公共卫生挑战,因为与大多数其他主要杀手不同,肝脏疾病导致的死亡
肝脏疾病的发病率正在迅速上升而不是下降。虽然肝移植可以延长生存期,但
需要移植的患者数量不断增加,但供体供应却停滞不前。为了解决这个重大问题
医学问题,我们正在努力构建人造肝组织,可以作为器官的桥梁或替代品
移植。开发人工肝组织的一个关键障碍是构建多尺度脉管系统
需要支持数十亿个密集的肝细胞。应对这一挑战的新方法将
改变肝脏研究和治疗。
我们最近的工作通过引入突破性方法推动该领域更接近解决这一障碍
用于在人造组织中 3D 打印体积血管网络。这一进步是通过添加
光吸收剂到立体光刻生物墨水,使数百万个体素能够在许多组织上形成图案
层。然而,用立体光刻技术生产的组织仍然不完全血管化且细胞化稀疏,
功能水平仍然达不到治疗所需的水平。我们最近获得了重要线索
来应对这一挑战。首先,我们确定了新的光吸收剂配方,其实质上
提高打印分辨率,提供了一种在体积上缩放更致密的脉管系统的新途径。此外,我们
发现将生物基质添加到生物墨水中可以让我们在打印的内容中“扩展”脉管系统和肝细胞
植入体内后产生具有天然密度的组织。这些数据使我们做出假设
支持技术和生物放大模式的双作用生物墨水将促进产生
具有在体内扩张的体积脉管系统的人类肝脏组织。此外,此类组织将具有肝
功能水平足以治疗肝病。为了检验这些假设,我们成立了一个团队
拥有肝脏和血管组织工程、生物材料和生物打印、临床肝脏方面的协同专业知识
外科、临床肝病学、肝细胞生物学和肝脏代谢。我们将利用我们的专业知识来开发
在体内生长的血管化生物打印肝组织。我们将首先制定一个新的生物墨水库
投影立体光刻技术具有改进的打印分辨率和生物活性,以促进 3D 打印和
体内组织工程(目标 1)。然后,我们将 3D 打印模拟肝脏脉管系统的按比例缩放的血管拓扑,
支持肝细胞植入(目标 2)。最后,我们将触发组织中的肝细胞扩张以实现
肝细胞密度和功能水平足以拯救肝损伤小鼠(目标 3)。
该提案的真正力量在于将生物打印和组织放大的生物模式混为一谈,
这将改变组织工程并产生生物打印的肝组织作为肝病的新疗法。
提案中开发的新材料生物墨水和 3D 打印创新也将广泛用于各个领域
转化生物医学的各个领域,例如心脏和肾脏疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2D and 3D liver models.
2D 和 3D 肝脏模型。
- DOI:10.1016/j.jhep.2022.06.022
- 发表时间:2023
- 期刊:
- 影响因子:25.7
- 作者:Saxton,SarahH;Stevens,KellyR
- 通讯作者:Stevens,KellyR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly R Stevens其他文献
Kelly R Stevens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly R Stevens', 18)}}的其他基金
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10631804 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10490395 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10657802 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10364975 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




