Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
基本信息
- 批准号:10669960
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-09-16
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAccelerationAddressArchitectureArtificial LiverArtificial tissueBiocompatible MaterialsBiologicalBiomedical EngineeringBioreactorsBlood VesselsBlood capillariesCellular biologyCessation of lifeClinicalCollaborationsDataDiameterDiseaseEngineeringEngraftmentFormulationGenerationsGoalsGrowthHeart DiseasesHepaticHepatocyteHepatologyHumanIn SituInkKidney DiseasesLibrariesLifeLiverLiver FailureLiver diseasesLobuleMeasuresMedicalMethodsMusNatural regenerationOperative Surgical ProceduresOrganOrgan TransplantationOsteogenesisPancreatic DiseasesPatientsPatternPhysiologyPrintingProtein BiosynthesisPublic HealthResearchResolutionRoleRouteTechnologyTestingTherapeuticTissue EngineeringTissuesTransplantationVascularizationWorkbioinkbioprintingdensitydrug metabolismfallshepatocyte engraftmentimplantationimprovedin vivoin vivo engraftmentinjuredinnovationinterstitialliver injuryliver metabolismliver transplantationmetermultidisciplinarynovel strategiesnovel therapeuticsregenerative growthscale upself assemblysupport networkvascular tissue engineering
项目摘要
Project Summary/Abstract
Liver disease is a pressing public health challenge, because unlike most other major killers deaths due
to liver disease are rapidly rising rather than falling. Although liver transplantation prolongs survival, there is a
growing number of patients in need of transplant, but donor supply has remained stagnant. To address this major
medical problem, we are working to build artificial liver tissue that could serve as a bridge or alterative to organ
transplant. A crucial remaining hurdle for developing artificial liver tissue is building the multiscale vasculature
needed to support billions of densely packed hepatocytes. Novel approaches that address this challenge would
transform liver research and therapy.
Our recent work pushed the field closer to addressing this hurdle by introducing a breakthrough method
for 3D printing volumetric vascular networks in artificial tissues. This advance was made possible by addition of
photoabsorbers to stereolithography bioinks, which enabled millions of voxels to be patterned over many tissue
layers. Yet, tissues produced with stereolithography remain incompletely vascularized and sparsely cellularized,
with functional levels that still fall short of those needed for therapy. We have recently gained important clues
towards addressing this challenge. First, we identified new photoabsorber formulations that substantively
improve print resolution, providing a new route to volumetrically scaling a denser vasculature. Furthermore, we
found that adding biological matrices to bioinks allows us “expand” vasculature and hepatocytes within printed
tissues after implantation in the body to produce tissues with native density. These data lead us to hypothesize
that dual-role bioinks that support both technical and biological modes of scale-up will facilitate generation of
human liver tissue with volumetric vasculature that expands in vivo. Further, such tissue will have hepatic
functional levels sufficient to therapeutically treat liver disease. To test these hypotheses, we established a team
with synergistic expertise in liver and vascular tissue engineering, biomaterials and bioprinting, clinical liver
surgery, clinical hepatology, liver cell biology, and liver metabolism. We will employ our expertise to develop
vascularized bioprinted liver tissue that grows in the body. We will first formulate a new library of bioinks for
projection stereolithography with improved print resolution and bioactivity, to facilitate both 3D printing and in
vivo tissue engineering (Aim 1). We will then 3D print scaled vascular topologies that mimic liver vasculature and
support hepatocyte engraftment (Aim 2). Finally, we will trigger hepatocyte expansion in the tissues to achieve
hepatocyte density and functional levels sufficient to rescue mice with liver injury (Aim 3).
The real power of this proposal lies in conflating bioprinting and biological modes of tissue scale-up,
which will transform tissue engineering and generate bioprinted liver tissue as a new therapy for liver disease.
The new material bioinks and 3D printing innovations developed in proposal would also be broadly useful across
diverse fields of translational biomedicine, such as heart and kidney disease.
项目摘要/摘要
肝病是一个紧迫的公共卫生挑战,因为与大多数其他主要杀手不同,
肝病迅速上升而不是下降。尽管肝移植延长了生存,但有一个
需要移植的患者数量越来越多,但供体供应仍然停滞不前。解决这个专业
医疗问题,我们正在努力建立可以用作桥梁或组织的人造肝组织
移植。发展人造肝组织的剩余剩余障碍正在建立多尺度脉管系统
需要支持数十亿个无填充的肝细胞。应对这一挑战的新颖方法将
改变肝脏研究和治疗。
我们最近的工作通过引入突破性方法使该领域更接近解决这一障碍
用于人造组织中的3D打印体积血管网络。通过添加
摄影师到立体光刻生物互联,使数百万的体素能够在许多组织上图案
层。然而,用立体光刻产生的组织仍然不完全进行血管化和稀疏的细胞化,
功能水平仍然没有治疗所需的水平。我们最近获得了重要的俱乐部
面对这一挑战。首先,我们确定了新的光吸光仪公式
改善打印分辨率,提供一条新的途径,以缩放更密集的脉管系统。此外,我们
发现将生物矩阵添加到生物界
在体内植入后的组织以产生天然密度的组织。这些数据导致我们假设
支持扩大技术和生物学模式的双重生物学将有助于生成
人体肝组织具有体内膨胀的体积脉管系统。此外,这种组织将具有肝
功能水平足以治疗治疗肝病。为了检验这些假设,我们建立了一个团队
具有肝脏和血管组织工程,生物材料和生物打印方面的协同专业知识,临床肝
手术,临床肝病学,肝细胞生物学和肝代谢。我们将利用我们的专业知识来发展
血管化生物打印的肝组织在体内生长。我们将首先制定一个新的生物学库
投影立体光刻具有改进的印刷分辨率和生物活性,以促进3D打印和
体内组织工程(AIM 1)。然后,我们将模仿肝脏脉管系统和
支持肝细胞植入(AIM 2)。最后,我们将触发组织中的肝细胞膨胀以实现
肝细胞密度和功能水平足以挽救肝损伤的小鼠(AIM 3)。
该提案的真正力量在于将生物涂印和组织缩放的生物学模式混为一谈,
这将改变组织工程并产生生物打印的肝组织,作为肝病的新疗法。
在提案中开发的新材料生物互联和3D打印创新也将在各个方面广泛使用
转化生物医学的各种领域,例如心脏和肾脏疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2D and 3D liver models.
2D 和 3D 肝脏模型。
- DOI:10.1016/j.jhep.2022.06.022
- 发表时间:2023
- 期刊:
- 影响因子:25.7
- 作者:Saxton,SarahH;Stevens,KellyR
- 通讯作者:Stevens,KellyR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly R Stevens其他文献
Kelly R Stevens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly R Stevens', 18)}}的其他基金
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10631804 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10490395 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10657802 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10364975 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Indiana Clinical and Translational Sciences Institute
印第安纳临床与转化科学研究所
- 批准号:
10622172 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Single Stage Surgical Intervention for Treatment of Severe Traumatic Brain Injury
治疗严重创伤性脑损伤的一期手术干预
- 批准号:
10776143 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10544780 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Validating a new, translatable biomaterial for healing critical bone defects
验证一种用于治疗严重骨缺损的新型可翻译生物材料
- 批准号:
10580837 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别: