Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
基本信息
- 批准号:10631804
- 负责人:
- 金额:$ 8.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAddressArtificial LiverArtificial tissueBiocompatible MaterialsBiologicalBlood VesselsCellular biologyCessation of lifeClinicalDataDonor personFormulationGenerationsHeart DiseasesHepaticHepatocyteHepatologyHumanIn SituKidney DiseasesLeadLibrariesLiverLiver diseasesMedicalMethodsMusOperative Surgical ProceduresOrgan TransplantationPatientsPatternPublic HealthResearchResolutionRoleRouteTestingTherapeuticTissue EngineeringTissuesTransplantationWorkbioinkbioprintingdensityfallshepatocyte engraftmentimplantationimprovedin vivoinnovationliver injuryliver metabolismliver transplantationnovel strategiesnovel therapeuticsscale upvascular tissue engineering
项目摘要
Project Summary/Abstract
Liver disease is a pressing public health challenge, because unlike most other major killers deaths due
to liver disease are rapidly rising rather than falling. Although liver transplantation prolongs survival, there is a
growing number of patients in need of transplant, but donor supply has remained stagnant. To address this major
medical problem, we are working to build artificial liver tissue that could serve as a bridge or alterative to organ
transplant. A crucial remaining hurdle for developing artificial liver tissue is building the multiscale vasculature
needed to support billions of densely packed hepatocytes. Novel approaches that address this challenge would
transform liver research and therapy.
Our recent work pushed the field closer to addressing this hurdle by introducing a breakthrough method
for 3D printing volumetric vascular networks in artificial tissues. This advance was made possible by addition of
photoabsorbers to stereolithography bioinks, which enabled millions of voxels to be patterned over many tissue
layers. Yet, tissues produced with stereolithography remain incompletely vascularized and sparsely cellularized,
with functional levels that still fall short of those needed for therapy. We have recently gained important clues
towards addressing this challenge. First, we identified new photoabsorber formulations that substantively
improve print resolution, providing a new route to volumetrically scaling a denser vasculature. Furthermore, we
found that adding biological matrices to bioinks allows us “expand” vasculature and hepatocytes within printed
tissues after implantation in the body to produce tissues with native density. These data lead us to hypothesize
that dual-role bioinks that support both technical and biological modes of scale-up will facilitate generation of
human liver tissue with volumetric vasculature that expands in vivo. Further, such tissue will have hepatic
functional levels sufficient to therapeutically treat liver disease. To test these hypotheses, we established a team
with synergistic expertise in liver and vascular tissue engineering, biomaterials and bioprinting, clinical liver
surgery, clinical hepatology, liver cell biology, and liver metabolism. We will employ our expertise to develop
vascularized bioprinted liver tissue that grows in the body. We will first formulate a new library of bioinks for
projection stereolithography with improved print resolution and bioactivity, to facilitate both 3D printing and in
vivo tissue engineering (Aim 1). We will then 3D print scaled vascular topologies that mimic liver vasculature and
support hepatocyte engraftment (Aim 2). Finally, we will trigger hepatocyte expansion in the tissues to achieve
hepatocyte density and functional levels sufficient to rescue mice with liver injury (Aim 3).
The real power of this proposal lies in conflating bioprinting and biological modes of tissue scale-up,
which will transform tissue engineering and generate bioprinted liver tissue as a new therapy for liver disease.
The new material bioinks and 3D printing innovations developed in proposal would also be broadly useful across
diverse fields of translational biomedicine, such as heart and kidney disease.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly R Stevens其他文献
Kelly R Stevens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly R Stevens', 18)}}的其他基金
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10669960 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10490395 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10657802 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
Photoabsorbing bioinks for expanding 3D printed human liver in situ
用于原位扩展 3D 打印人类肝脏的光吸收生物墨水
- 批准号:
10364975 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Research Grant














{{item.name}}会员




