Oncogenic Kras drives stromal adipogenesis to promote colorectal cancer (CRC) progression
致癌 Kras 驱动基质脂肪生成,促进结直肠癌 (CRC) 进展
基本信息
- 批准号:10670996
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-11-08
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipocytesAllelesAutomobile DrivingBiologicalBiological AssayBypassCXCL3 geneCancer ModelCarcinomaCatalogsCell Culture TechniquesCell Cycle ProgressionCell LineCellsChromosomal InstabilityClinicCoculture TechniquesColorectal CancerCytokine GeneDNA Sequence AlterationDataData SetDevelopmentDiagnosisDiseaseDisease ProgressionDropsEmbryoEngineeringEventFibroblastsFunctional disorderGene ExpressionGene set enrichment analysisGenesGeneticGenomic InstabilityGenomicsGoalsHistologicHumanHuman EngineeringImmuneImpairmentKRAS oncogenesisKRAS2 geneKRASG12DLipidsMaintenanceMalignant - descriptorMalignant NeoplasmsMediatingMetastatic Neoplasm to the BoneMinorityModelingMolecularMusMutationMyelogenousMyeloid-derived suppressor cellsNatureNeoplasm MetastasisOncogenesOncogenicOutcomePathway interactionsPatientsPhasePhenotypePostdoctoral FellowProliferatingPublic HealthRNA-Directed DNA PolymeraseRecurrenceReporterResearchResearch Project GrantsRoleSignal TransductionStromal CellsSurveysSurvival RateTP53 geneTelomeraseThe Cancer Genome AtlasTrainingTransforming Growth Factor betaTransgenesTumor BiologyTumor ImmunityTumor PromotionWorkadvanced diseaseangiogenesiscancer cellcell typecolon cancer patientscolorectal cancer metastasiscolorectal cancer progressionconditional knockoutcytokinedesigngenomic aberrationsin silicoin vivolipid biosynthesislymph nodesmetastatic colorectalmetastatic processmouse modelnew therapeutic targetnovelpreventpromoterprostate cancer modelrecruitsingle-cell RNA sequencingtargeted treatmenttelomeretherapeutic targettraittranscription factortumortumor microenvironmenttumor progressiontumorigenesis
项目摘要
Project Summary
While the 5-year survival rate for colorectal cancer (CRC) patients with localized stage disease (as defined
by SEER) is 90%, this survival rate drops to 14% for patients diagnosed with metastatic CRC. Thus, there is an
urgent need to define the mechanisms governing progression to advanced disease and its maintenance.
Human CRCs harboring oncogenic mutations in the KRAS oncogene (designated hereafter as KRAS*) are
25% more likely to develop metastases. Similarly, our CRC mouse model, engineered with an inducible KRAS*
transgene and conditional null alleles of APC and p53 alleles (iKAP), has revealed a role for KRAS* in driving
cancer progression and metastasis. Mechanistically, KRAS*-driven cancer metastasis functions in part by
activating cancer cell-intrinsic TGFβ signaling and suppressing anti-tumoral immunity via the IRF2-CXCL3 axis
which recruits myeloid derived suppressor cells. Unfortunately, emerging therapies targeting either KRAS* or
TGFβ pathways have shown limited efficacy in the clinic, motivating us to identify and validate additional
KRAS*-driven cancer progression mechanisms with the goal of expanding the repertoire of therapeutic targets
for metastatic CRC. Utilizing the iKAP model, functional gene set enrichment and histological analyses of
KRAS*-expressing CRC metastases revealed a strong adipogenesis signature and preponderance of
lipofibroblasts and angiogenesis in the tumor microenvironment. Correspondingly, co-culture of mouse
embryonic fibroblasts with conditioned media from iKAP primary cell lines stimulated their differentiation into
cells with adipocyte and fibroblast traits, i.e., “lipofibroblasts.” In the F99 phase of this proposal, I seek to define
the molecular mechanisms by which KRAS*-expressing cancer cells drive lipofibrogenesis and to understand the
tumor biological role of lipofibroblasts in KRAS*-driven CRC progression.
As only a minority of human or mouse KRAS* CRC cases progress to metastatic disease, clearly genetic
events beyond KRAS activation drive metastases. For example, patients with or without KRAS* mutation both
show around a 40% lymph node metastatic rate. The study of such pro-metastasis events would be greatly
facilitated by incorporating an inducible telomerase reverse transcriptase (LSL-mTERT) into our existing iAP
model, thus modeling telomere-based crisis and genome instability followed by telomerase reactivation. In our
telomerase-inducible mouse models of prostate cancer, crisis-telomerase sequence generates cancer-relevant
genomic aberrations and increases metastatic potential. Although incorporation of genomic instability into the
iAP model would not create a more human-like model, it would provide a platform to identify amplifications and
deletions associated with the metastatic process. In the K00 phase of this proposal, I seek to engineer human-
like telomere dynamics in the iAP model to assess the impact of telomere-based crisis and telomerase
reactivation in driving metastasis and to survey the genomic alterations that may underlie the metastatic process.
Such efforts may facilitate the discovery of new therapeutic targets for advanced CRC disease.
项目摘要
而具有局限期疾病的结直肠癌(CRC)患者的5年存活率(定义为
SEER)为90%时,转移性结直肠癌患者的存活率降至14%。因此,有一个
迫切需要确定进展为晚期疾病及其维持的机制。
在KRAS癌基因(以下称为KRAS*)中存在致癌突变的人CRC是
发生转移的可能性增加25%。同样,我们的CRC小鼠模型,设计了可诱导的KRAS*
APC和p53等位基因的转基因和条件性零等位基因(IKAP)揭示了KRAS*在驱动中的作用
癌症的进展和转移。从机制上讲,KRAS*驱动的癌症转移功能部分是通过
通过IRF2-CXCL3轴激活癌细胞内源性转化生长因子β信号抑制抗肿瘤免疫
它招募髓系来源的抑制细胞。不幸的是,针对KRAS*或
转化生长因子β通路在临床上显示的疗效有限,这促使我们识别和验证其他
KRAS*驱动的癌症进展机制,目标是扩大治疗靶点的保留范围
用于转移性结直肠癌。利用IKAP模型,功能基因集丰富和组织学分析
表达KRAS*的结直肠癌转移瘤显示出强烈的成脂特征和优势
肿瘤微环境中的脂成纤维细胞与血管生成。相应地,小鼠的共培养
来自IKAP原代细胞系的条件培养液刺激胚胎成纤维细胞分化为
具有脂肪细胞和成纤维细胞特性的细胞,即“脂成纤维细胞”。在这项提案的F99阶段,我试图定义
表达KRAS*的癌细胞驱动脂肪纤维化的分子机制及了解
脂成纤维细胞在KRAS*驱动的结直肠癌进展中的肿瘤生物学作用。
由于只有少数人或小鼠KRAS*CRC病例进展为转移性疾病,显然是遗传的
KRAS激活以外的事件会导致转移。例如,带有或不带有KRAS*突变的患者
显示约40%的淋巴结转移率。对这种促转移事件的研究将会有很大的意义
通过将可诱导端粒酶逆转录酶(LSL-mTERT)整合到我们现有的IAP中来促进
模型,从而模拟基于端粒的危机和基因组不稳定,随后端粒酶重新激活。在我们的
端粒酶诱导的前列腺癌小鼠模型,危机-端粒酶序列产生癌症相关
基因组异常并增加转移潜能。尽管将基因组不稳定性纳入到
IAP模型不会创建一个更接近人类的模型,它将提供一个平台来识别扩增和
与转移过程相关的缺失。在这项提案的K00阶段,我寻求设计人类-
如IAP模型中的端粒动力学评估基于端粒的危机和端粒酶的影响
重新激活在驱动转移中的作用,并调查可能在转移过程中潜在的基因组变化。
这些努力可能有助于发现晚期结直肠癌的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wen-Hao Hsu其他文献
Wen-Hao Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wen-Hao Hsu', 18)}}的其他基金
Oncogenic Kras drives stromal adipogenesis to promote colorectal cancer (CRC) progression
致癌 Kras 驱动基质脂肪生成,促进结直肠癌 (CRC) 进展
- 批准号:
10528562 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKT cell activation depend on lipid accumulation in adipocytes
NKT 细胞的激活取决于脂肪细胞中的脂质积累
- 批准号:
22K08679 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




