Identifying optimal dynamic strategies for prostate cancer control
确定前列腺癌控制的最佳动态策略
基本信息
- 批准号:10671711
- 负责人:
- 金额:$ 19.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-11 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAreaAwardBig DataCancer ControlClassificationClinicalClinical DataCommunitiesComparative Effectiveness ResearchComplexComputer softwareDataData ScienceDatabasesDetectionDevelopmentDiseaseDisease ProgressionDocumentationElectronic Health RecordEnvironmentEpidemiologyFutureGeneticGenetic Predisposition to DiseaseGoalsHealthIndolentInheritedInterventionLeadLearningLife StyleLinkMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMentorsMethodsNonmetastaticPSA screeningPatientsPersonsPhasePositioning AttributePreventionProspective, cohort studyRecommendationRecording of previous eventsResearchResearch PersonnelScreening ResultShapesSpecific qualifier valueStatistical MethodsTimeTrainingTreatment-related toxicityWorkanalytical methodanalytical toolanticancer researchcancer carecancer preventioncareercareer developmentclinical careclinical decision-makingcomorbiditycost effectivedesigndietaryimprovedinnovationinterestlearning strategylongitudinal databasemenmultidisciplinarynovelopen sourcepersonalized medicinepreventprogramsprostate cancer preventionrandomized trialscreeningtooltrial designtumortumor progressionuser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
Big Data has the potential to revolutionize cancer research and care, but extracting the information it holds on
the optimal strategies for cancer control will require cutting-edge tools in data science. The optimal strategies
for cancer control will be dynamic strategies that adapt clinical decisions over time to a patient’s evolving
clinical history. Unfortunately, conventional statistical methods cannot appropriately compare dynamic
strategies, so we need methods specifically designed for this task: g-methods. G-methods have helped to
shape clinical care in many areas, but they have not been systematically applied to cancer research. Further,
while g-methods let us validly estimate the effect of pre-specified strategies, these may not be the optimal
strategies. My overarching goal is to apply and further develop analytic methods to learn the optimal strategies
for cancer control from complex longitudinal data and generate user-friendly, publicly-available software to
make these methods available to the cancer research community.
I will apply these methods to answer key clinical questions across the prostate cancer control continuum: 1) the
optimal dietary and lifestyle strategies to prevent aggressive prostate cancer, 2) the optimal screening strategy
following a baseline PSA test to maximize detection of aggressive disease while minimizing detection of
indolent tumors, and 3) the optimal statin therapy strategy to maximize survival among men with nonmetastatic
prostate cancer. This project will leverage data from a large prospective cohort study and a novel platform of
electronic health records linked with genetic data. I will first apply g-methods to estimate the effects of
recommended strategies for cancer control that a randomized trial would have limited feasibility to evaluate. I
will then investigate whether novel methods that learn the optimal strategies from the data may lead to
improved, targeted recommendations that get the right interventions to the right people at the right time.
This innovative project will advance comparative effectiveness research for cancer care at the cutting edge of
data science. I am optimally positioned to undertake this research based on my 1) expertise in cancer,
epidemiology, and causal inference; 2) exceptional multidisciplinary mentoring team comprised of global
leaders in their respective fields; and 3) unparalleled research environment to support my career development.
Through this work, I will expand my expertise in new areas, including machine learning. The proposed
research and training will help me achieve my long-term career goal to become an independent investigator
and lead a transdisciplinary research program that integrates causal inference and machine learning to identify
optimal strategies for cancer control. Leveraging rich, existing data, this proposal represents a significant
opportunity to develop, apply, and disseminate powerful methods for big clinical data to accelerate progress in
cancer research and care.
项目摘要/摘要
大数据有可能给癌症研究和治疗带来革命性的变化,但提取它持有的信息
癌症控制的最佳策略将需要数据科学中的尖端工具。最优策略
因为癌症控制将是动态的策略,使临床决策随着时间的推移而适应患者的演变
临床病史。不幸的是,传统的统计方法不能恰当地比较动态
战略,所以我们需要专门为这项任务设计的方法:G-方法。G-方法帮助我们
在许多领域形成了临床护理,但它们还没有系统地应用于癌症研究。此外,
虽然g-方法可以让我们有效地估计预先指定的策略的效果,但这些可能不是最优的。
战略。我的首要目标是应用并进一步发展分析方法来学习最优策略。
用于从复杂的纵向数据进行癌症控制,并生成用户友好的、公开可用的软件
将这些方法提供给癌症研究社区。
我将应用这些方法来回答前列腺癌控制过程中的关键临床问题:1)
预防侵袭性前列腺癌的最佳饮食和生活方式策略,2)最佳筛查策略
遵循基线PSA测试,以最大限度地检测侵袭性疾病,同时最大限度地减少对
惰性肿瘤,以及3)在非转移性男性中最大化生存的最佳他汀类药物治疗策略
前列腺癌。该项目将利用来自大型前瞻性队列研究的数据和一个新的平台
与基因数据相关联的电子健康记录。我将首先应用g-方法来估计
推荐的癌症控制策略,随机试验评估的可行性有限。我
然后将调查从数据中学习最佳策略的新方法是否会导致
改进的、有针对性的建议,在正确的时间向正确的人提供正确的干预措施。
这一创新项目将推进癌症护理的比较有效性研究,
数据科学。基于我在癌症方面的专业知识,我处于进行这项研究的最佳位置。
流行病学和因果推断;2)由全球
各自领域的领军人物;3)无与伦比的研究环境,支持我的职业发展。
通过这项工作,我将扩展我在新领域的专业知识,包括机器学习。建议数
研究和培训将帮助我实现成为一名独立调查员的长期职业目标
并领导一个整合了因果推理和机器学习的跨学科研究计划,以确定
癌症控制的最佳策略。利用丰富的现有数据,这项建议代表了一个重要的
有机会开发、应用和传播针对大数据的强大方法,以加快
癌症研究和护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbra Anne Dickerman其他文献
Barbra Anne Dickerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbra Anne Dickerman', 18)}}的其他基金
Identifying optimal dynamic strategies for prostate cancer control
确定前列腺癌控制的最佳动态策略
- 批准号:
10640406 - 财政年份:2020
- 资助金额:
$ 19.09万 - 项目类别:
Identifying optimal dynamic strategies for prostate cancer control
确定前列腺癌控制的最佳动态策略
- 批准号:
10162559 - 财政年份:2020
- 资助金额:
$ 19.09万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 19.09万 - 项目类别:
Standard Grant