Software tools for reproducibly building biomodels
用于可重复构建生物模型的软件工具
基本信息
- 批准号:10676067
- 负责人:
- 金额:$ 39.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-13 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAutomationBacteriaBedsBehaviorBiochemicalBiologicalBiological ModelsBiological ProcessBiologyBiomedical EngineeringCell modelCellsCollaborationsComputer softwareDataData SourcesDiseaseEcologyEducational workshopElectrophysiology (science)FeedbackFutureGenomicsGenotypeHumanIndividualIndustrializationManualsMathematicsMedicalMedicineMetadataMethodsModelingOrganOrganismPathway interactionsPharmaceutical PreparationsPhenotypePhysiciansProcessPythonsReaderRecordsReproducibilityResearch PersonnelResolutionResourcesScientistServicesSoftware EngineeringSoftware ToolsSystemTestingTissuesTrainingWorkbehavior predictionbiochemical modelbiological systemsdesignexperimental studygenomic dataimprovedin silicomicroorganismmodel buildingmodel designmulti-scale modelingopen sourceoutreachpersonalized medicinepredictive modelingpredictive toolsprototypepublic databaserational designsimulationtechnology research and developmenttooluser-friendlyweb site
项目摘要
TECHNOLOGY RESEARCH AND DEVELOPMENT 1: PROJECT SUMMARY
Despite substantial effort, we cannot comprehensively predict the behavior of biological systems.
Consequently, we cannot explain how genotype influences phenotype, design cells, or treat many diseases.
Improved dynamical models are needed to understand biology and accelerate bioengineering and medicine.
Model building is one of the bottlenecks to better models because our existing model building tools require
extensive manual input and obscure the data and assumptions behind models. As a result, authors cannot
precisely describe how they constructed models, readers cannot review this information, and models cannot be
reproduced. This makes it hard to understand and extend models and, in turn, build accurate models.
Recently, we piloted a method for transparently and reproducibly building whole-cell models from diverse
genomic and other data. Further work is needed to extend and generalize this method for other domains.
We will develop the first software tool for reproducibly and transparently building SBML-compatible dynamical
biochemical models of intracellular pathways. The tool will include modules for aggregating model input data,
organizing this data for model design, and designing models from this data. The tool will make model building
reproducible by tracking every data source and assumption.
We will use biochemical models as a test bed for developing broadly-applicable methods for reproducibly
building biomodels. This approach will allow us to leverage the large amount of data available to build
biochemical models, concretely test our ideas, and integrate our tool into the center's reproducible biochemical
modeling workflow. To enable future support for other domains, such as multiscale modeling,
electrophysiology, and ecology, we will make our tool as modular and extensible as possible.
To ensure that our tool advances biomodeling, we will develop our tool in conjunction with several CPs which
aim to develop whole-cell models of bacteria and human cells. These CPs will push us to develop practical
tools for constructing models, and we will pull the CPs to construct models that are understandable, reusable,
and extensible.
To help researchers use our software, we will work with TR&Ds 2 and 3 to combine our software into a
reproducible modeling workflow. We will also extensively document our software and distribute it open-source.
In addition, as part of the Training and Dissemination Core, we will develop tutorials and organize workshops.
We anticipate that our tool will help researchers build more predictive models, and we anticipate that these
models will help scientists discover new biology by enabling them to perform unprecedented in silico
experiments with complete control, infinite resolution, and unlimited scope; help physicians interpret personal
genomic data and personalize therapy; and help bioengineers rationally design microorganisms for a wide
range of industrial and medical applications such as detecting disease and synthesizing drugs.
技术研究与开发1:项目概要
尽管付出了巨大的努力,我们仍然无法全面预测生物系统的行为。
因此,我们无法解释基因型如何影响表型、设计细胞或治疗许多疾病。
需要改进的动力学模型来理解生物学和加速生物工程和医学。
模型构建是改进模型的瓶颈之一,因为我们现有的模型构建工具需要
大量的人工输入和模糊模型背后的数据和假设。因此,作者不能
精确地描述他们如何构建模型,读者无法查看这些信息,模型也无法
复制。这使得很难理解和扩展模型,进而构建准确的模型。
最近,我们试验了一种方法,用于透明和可重复地从不同的细胞构建全细胞模型。
基因组和其他数据。需要进一步的工作来扩展和推广这种方法到其他领域。
我们将开发第一个软件工具,用于可重复和透明地构建与SBML兼容的动态
细胞内途径的生化模型。该工具将包括汇总模型输入数据的模块,
组织这些数据用于模型设计,并根据这些数据设计模型。该工具将使模型的建立
通过跟踪每一个数据源和假设来重现。
我们将使用生化模型作为测试平台,开发广泛适用的可重复方法
建造生物模型。这种方法将使我们能够利用大量可用数据来构建
生物化学模型,具体测试我们的想法,并将我们的工具整合到中心的可再生生物化学模型中。
建模工作流。为了使未来支持其他领域,如多尺度建模,
电生理学和生态学,我们将使我们的工具尽可能模块化和可扩展。
为了确保我们的工具能够推进生物建模,我们将与几个CP一起开发我们的工具,
旨在开发细菌和人类细胞的全细胞模型。这些CP将推动我们开发实用的
构建模型的工具,我们将拉动CP来构建可理解的,可重用的,
并且可扩展。
为了帮助研究人员使用我们的软件,我们将与TR& D 2和3合作,将我们的软件联合收割机组合成一个
可重复的建模工作流程。我们还将广泛记录我们的软件,并将其开源。
此外,作为培训和传播核心的一部分,我们将开发教程并组织研讨会。
我们预计,我们的工具将帮助研究人员建立更多的预测模型,我们预计,这些
模型将帮助科学家发现新的生物学,使他们能够进行前所未有的计算机模拟,
完全控制,无限分辨率和无限范围的实验;帮助医生解释个人
基因组数据和个性化治疗;并帮助生物工程师合理设计微生物,
工业和医疗应用的范围,如检测疾病和合成药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Ross Karr其他文献
Jonathan Ross Karr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Ross Karr', 18)}}的其他基金
Toward whole-cell models for precision medicine and synthetic biology
面向精准医学和合成生物学的全细胞模型
- 批准号:
9142821 - 财政年份:2016
- 资助金额:
$ 39.54万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Cooperative Agreement
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
EU-Funded
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Research Grant
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 39.54万 - 项目类别:
Collaborative R&D