Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
基本信息
- 批准号:10684184
- 负责人:
- 金额:$ 67.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAllelesAnatomyBiologicalBiological MarkersBrainBrain imagingBrain regionComplexComputer softwareDataDiagnosisDiffuseDiseaseEtiologyFinancial costFundingGene ExpressionGeneticGenomeHeritabilityHuman MicrobiomeLaboratoriesMapsMeasuresMental HealthMental disordersMethodologyMethodsModelingNeuroanatomyNeurobiologyOutcomeParticipantPopulationPredispositionPrognosisProteomicsRegional AnatomyResearchSingle Nucleotide PolymorphismStatistical MethodsTestingUnited States National Institutes of HealthValidationVariantWorkagedautism spectrum disordercognitive developmentdesignemerging adultexperiencegenome wide association studyhealth assessmenthigh dimensionalityinterestmultidimensional datamultimodalityneuroimagingneuropsychiatric disorderneuropsychiatrynovelsimulationstatisticstheoriestool
项目摘要
Abstract
Mental health problems such as autism are highly prevalent in the population and incur great suffering and
financial costs. Yet there is currently a dearth of biomarkers that accurately predict their diagnosis or
prognosis. Characterizing the contributions of high-dimensional biomarkers to susceptibility of such complex
disorders is critically important for advancing our understanding of their etiology and for developing new
treatments. The fraction of variance explained (FVE) by a set of biomarkers is a measure of the total amount of
information for an outcome contained in the predictor variables. It is a fundamental quantity in much of mental
health-related research, e.g., human microbiome, proteomics, gene expression, etc. Canonical examples
where the FVE is of fundamental interest include Genome-Wide Association Studies (GWAS) and
neuroimaging, both crucial tools for understanding the biological basis of mental health disorders. GWAS have
successfully mapped thousands of genetic factors by mass-univariate association of millions of single
nucleotide polymorphisms (SNPs), but the top significant associations, even in aggregate, account for only a
small proportion of susceptibility. To assess the amount of information in GWAS, the SNP-heritability, h2SNP,
quantifies the FVE among all GWAS SNPs in aggregate, regardless of significance. Similarly, the FVE by brain
imaging measures captures variation in the brain related to mental illness, which again appears to be highly
distributed. In both the genetic and brain imaging domains, the number of predictors is extremely large, in the
order of thousands to millions, far larger than the number of subjects. As a result, the specific associations with
each predictor unit cannot be estimated, and effects of specific loci are extremely difficult to identify. In
contrast, the FVE can be reliably estimated from data, even if only univariate summary statistics are available.
Estimating FVE requires sophisticated statistical methods designed for these particular, high-dimensional data.
In this proposal, we propose a general framework for FVE estimation, applicable to high-dimensional data
including both GWAS and brain imaging settings. We develop foundational theory establishing the validity and
consistency of FVE estimation, develop new methods for evaluating the required conditions in real data, and
develop methods for partitioning FVE into more local components, allowing understanding of the distribution of
contributions to susceptibility in a top-down approach. We apply these methods to the Adolescent Brain
Cognitive Development (ABCD) Study, comprising longitudinal, multi-modal brain imaging, GWAS data, and
autism-related assessments for 11,875 participants aged 9-10 at baseline and continuing into early adulthood.
摘要
自闭症等心理健康问题在人群中非常普遍,并造成极大的痛苦和
财务成本。然而,目前缺乏准确预测其诊断或预后的生物标志物。
预后。表征高维生物标志物对这种复合体易感性的贡献
障碍对于促进我们对其病因的理解和开发新的疾病至关重要。
治疗。由一组生物标志物解释的方差分数(FVE)是对
预测变量中包含的结果信息。它是许多心理活动中的一个基本量
与健康有关的研究,例如人类微生物组、蛋白质组学、基因表达等
FVE最重要的领域包括全基因组关联研究(GWAS)和
神经成像,这两个都是了解精神健康障碍的生物学基础的重要工具。GWAs拥有
通过对数百万个个体的质量-单变量关联成功地定位了数千个遗传因素
核苷酸多态(SNPs),但最重要的关联,即使是聚集在一起,也只占
敏感度比例较小。为了评估GWAS中的信息量,SNP遗传度,h2SNP,
量化所有GWASSNPs中的FVE,而不考虑重要性。同样,大脑的FVE
成像测量捕捉到大脑中与精神疾病相关的变化,这又一次显示出高度的
分布式的。在遗传和脑成像领域,预测因子的数量都非常大,在
几千到几百万的数量级,远远大于受试者的数量。因此,特定的关联与
每个预测单元都无法估计,而且特定基因座的影响极难识别。在……里面
相比之下,即使只有单变量汇总统计数据可用,也可以从数据中可靠地估计FVE。
估计FVE需要为这些特殊的、高维数据设计复杂的统计方法。
在该方案中,我们提出了一种适用于高维数据的FVE估计的通用框架
包括GWAS和脑成像环境。我们发展了确立有效性的基础理论,并
FVE估计的一致性,开发新的方法来评估实际数据中所需的条件,以及
开发将FVE划分为更多本地组件的方法,以便了解
在自上而下的方法中对敏感性的贡献。我们将这些方法应用于青少年的大脑
认知发展(ABCD)研究,包括纵向、多模式脑成像、GWAS数据和
对11,875名年龄在9-10岁并持续到成年早期的参与者进行了与自闭症相关的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schwartzman其他文献
Armin Schwartzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schwartzman', 18)}}的其他基金
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10521915 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
9204653 - 财政年份:2016
- 资助金额:
$ 67.55万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8445964 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8799693 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8236310 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8790516 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8633009 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 67.55万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别: