Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
基本信息
- 批准号:10684184
- 负责人:
- 金额:$ 67.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAllelesAnatomyBiologicalBiological MarkersBrainBrain imagingBrain regionComplexComputer softwareDataDiagnosisDiffuseDiseaseEtiologyFinancial costFundingGene ExpressionGeneticGenomeHeritabilityHuman MicrobiomeLaboratoriesMapsMeasuresMental HealthMental disordersMethodologyMethodsModelingNeuroanatomyNeurobiologyOutcomeParticipantPopulationPredispositionPrognosisProteomicsRegional AnatomyResearchSingle Nucleotide PolymorphismStatistical MethodsTestingUnited States National Institutes of HealthValidationVariantWorkagedautism spectrum disordercognitive developmentdesignemerging adultexperiencegenome wide association studyhealth assessmenthigh dimensionalityinterestmultidimensional datamultimodalityneuroimagingneuropsychiatric disorderneuropsychiatrynovelsimulationstatisticstheoriestool
项目摘要
Abstract
Mental health problems such as autism are highly prevalent in the population and incur great suffering and
financial costs. Yet there is currently a dearth of biomarkers that accurately predict their diagnosis or
prognosis. Characterizing the contributions of high-dimensional biomarkers to susceptibility of such complex
disorders is critically important for advancing our understanding of their etiology and for developing new
treatments. The fraction of variance explained (FVE) by a set of biomarkers is a measure of the total amount of
information for an outcome contained in the predictor variables. It is a fundamental quantity in much of mental
health-related research, e.g., human microbiome, proteomics, gene expression, etc. Canonical examples
where the FVE is of fundamental interest include Genome-Wide Association Studies (GWAS) and
neuroimaging, both crucial tools for understanding the biological basis of mental health disorders. GWAS have
successfully mapped thousands of genetic factors by mass-univariate association of millions of single
nucleotide polymorphisms (SNPs), but the top significant associations, even in aggregate, account for only a
small proportion of susceptibility. To assess the amount of information in GWAS, the SNP-heritability, h2SNP,
quantifies the FVE among all GWAS SNPs in aggregate, regardless of significance. Similarly, the FVE by brain
imaging measures captures variation in the brain related to mental illness, which again appears to be highly
distributed. In both the genetic and brain imaging domains, the number of predictors is extremely large, in the
order of thousands to millions, far larger than the number of subjects. As a result, the specific associations with
each predictor unit cannot be estimated, and effects of specific loci are extremely difficult to identify. In
contrast, the FVE can be reliably estimated from data, even if only univariate summary statistics are available.
Estimating FVE requires sophisticated statistical methods designed for these particular, high-dimensional data.
In this proposal, we propose a general framework for FVE estimation, applicable to high-dimensional data
including both GWAS and brain imaging settings. We develop foundational theory establishing the validity and
consistency of FVE estimation, develop new methods for evaluating the required conditions in real data, and
develop methods for partitioning FVE into more local components, allowing understanding of the distribution of
contributions to susceptibility in a top-down approach. We apply these methods to the Adolescent Brain
Cognitive Development (ABCD) Study, comprising longitudinal, multi-modal brain imaging, GWAS data, and
autism-related assessments for 11,875 participants aged 9-10 at baseline and continuing into early adulthood.
摘要
心理健康问题,如自闭症,在人口中非常普遍,并造成巨大的痛苦,
财务费用。然而,目前缺乏生物标志物,可以准确预测其诊断或
预后表征高维生物标志物对这种复杂的易感性的贡献
疾病对于促进我们对其病因学的理解和开发新的
治疗。由一组生物标志物解释的方差分数(FVE)是生物标志物的总量的量度。
预测变量中包含的结果的信息。它是一个基本的数量在许多心理
与健康有关的研究,例如,人类微生物组学、蛋白质组学、基因表达等。
FVE具有根本意义的研究包括全基因组关联研究(GWAS)和
神经影像学,两者都是理解心理健康障碍生物学基础的重要工具。GWAS拥有
通过对数百万个单变量的质量单变量关联,成功地绘制了数千个遗传因子,
核苷酸多态性(SNPs),但最重要的关联,即使在一起,只占一个
小比例的敏感性。为了评估GWAS中的信息量,SNP遗传力,h2SNP,
量化所有GWAS SNP中的FVE,无论显著性如何。同样,大脑的FVE
成像测量捕捉到与精神疾病有关的大脑变化,这再次显示出高度
发放在遗传和脑成像领域,预测因子的数量非常大,
数以千计到数百万计,远远大于受试者的数量。因此,具体的关联
每个预测单元都不能被估计,并且特定位点的效应极难识别。在
相反,即使只有单变量汇总统计量可用,FVE也可以从数据中可靠地估计。
估计FVE需要为这些特定的高维数据设计的复杂统计方法。
在本提案中,我们提出了一个适用于高维数据的FVE估计的通用框架
包括GWAS和脑成像设置。我们发展基础理论,建立有效性,
FVE估计的一致性,开发用于评估真实的数据中所需条件的新方法,以及
开发将FVE划分为更多本地组件的方法,从而了解
对易感性的贡献。我们将这些方法应用于青少年大脑
认知发育(ABCD)研究,包括纵向、多模态脑成像、GWAS数据和
对11,875名9-10岁的参与者进行了自闭症相关评估,并持续到成年早期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schwartzman其他文献
Armin Schwartzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schwartzman', 18)}}的其他基金
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10521915 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
9204653 - 财政年份:2016
- 资助金额:
$ 67.55万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8445964 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8799693 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8236310 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8790516 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8633009 - 财政年份:2012
- 资助金额:
$ 67.55万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 67.55万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 67.55万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 67.55万 - 项目类别: