Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
基本信息
- 批准号:8790516
- 负责人:
- 金额:$ 22.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-03 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:Biological MarkersBrain imagingChargeChildClimateCognitiveCommunitiesComplexComputer softwareComputer-Assisted Image AnalysisDataDependenceDetectionDevelopmentDiseaseEnvironmental MonitoringExhibitsFamilyGoalsHealthHeat Stress DisordersHeightLeadMalignant NeoplasmsMalignant neoplasm of lungMass Spectrum AnalysisMedical ImagingMethodsModelingNoiseNorth AmericaOutputPerformanceProceduresProteinsProteomicsRiskRisk MarkerSamplingSignal TransductionStatistical MethodsStructureTestingWidthbasecancer proteomicsclimate changeconditioningfollow-uphigh throughput technologyinterestmethod developmentprotein structurereading abilitysimulationstatisticstheoriestooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Large-scale multiple testing has become ubiquitous in the search for disease and health risk markers using high-throughput technologies. While statistical methods for multiple testing often assume independence between the tests, many real situations exhibit dependence and an underlying structure. Examples of spatial structure are one-dimensional (1D) in the case of proteomic data; 2D in the case of environmental data; and 3D in the case of brain imaging data. Ignoring correlation in the analysis may lead to a different set and ordering of discovered features, resulting in increased error rates and potential missing of important features. There is a need to characterize the effect of correlation in multiple testing and incorporate it into the analysis. The goal of this proposal is to develop multiple testing methods that incorporate the correlation in the data in order to increase statistical power, control error rates and obtain appropriately interpretable results. This is done in two different ways. (1) In Aims 1 and 2, we assume a spatial structure and stationary ergodic correlation, where the signal of interest consists of a relatively small number of unimodal peaks. We use random field theory to compute p-values for testing the heights of local maxima of the observed data after smoothing. We develop these methods in complexity from 1D to 3D domains, and from peaks of equal width to peaks of unequal width. We then adapt and apply these methods to various types of data obtained from high-throughput technologies, specifically: mass- spectrometry data for identifying protein biomarkers of cancer; climate model output data for identification of geographical regions at risk for heat stress as a result of climate change; and brain imaging data for identification of anatomical regions involved in abnormal cognitive development. (2) In Aim 3, we assume a general correlation structure, not necessarily stationary or ergodic, and propose a conditional marginal analysis, where correlation is incorporated through conditioning on the observed marginal distribution of likely null cases. Although not exclusively, emphasis throughout is placed on false discovery rate inference. This proposal provides a unified view of signal detection for random fields that applies broadly to a large class of problems ranging from proteomics to medical imaging to environmental monitoring. From a statistical point of view, it provides a new answer to the problem of controlling FDR in random fields. By taking advantage of the dependence structure, the methods developed in this proposal offer higher statistical power in the search for markers, so that a smaller number of false markers will be tested in follow-up studies.
描述(由申请人提供):在使用高通量技术搜索疾病和健康风险标志物时,大规模多重检测已变得无处不在。虽然多重检验的统计方法通常假设检验之间是独立的,但许多真实的情况都表现出依赖性和潜在的结构。空间结构的示例在蛋白质组数据的情况下是一维(1D)的;在环境数据的情况下是2D的;以及在脑成像数据的情况下是3D的。在分析中忽略相关性可能会导致发现的特征的不同集合和排序,从而导致错误率增加和重要特征的潜在缺失。有必要说明多重检验中相关性的影响,并将其纳入分析。 该提案的目标是开发多种测试方法,将相关性纳入数据中,以增加统计功效,控制错误率并获得适当的可解释结果。这是以两种不同的方式完成的。(1)在目标1和2中,我们假设空间结构和平稳遍历相关性,其中感兴趣的信号由相对少量的单峰峰组成。我们使用随机场理论来计算p值,以测试平滑后的观测数据的局部极大值的高度。我们开发这些方法的复杂性从一维到三维域,从峰的宽度相等的峰不等的宽度。然后,我们将这些方法应用于从高通量技术获得的各种类型的数据,特别是:用于识别癌症蛋白质生物标志物的质谱数据;用于识别由于气候变化而处于热应激风险的地理区域的气候模型输出数据;以及用于识别参与异常认知发展的解剖区域的脑成像数据。(2)在目标3中,我们假设一个一般的相关性结构,不一定是平稳或遍历的,并提出了一个条件边际分析,其中相关性是通过对可能为空的情况下观察到的边际分布的条件。虽然不是唯一的,重点放在整个假发现率推断。 该建议提供了一个统一的观点,信号检测的随机场,广泛适用于一个大类的问题,从蛋白质组学,医学成像,环境监测。从统计学的角度,它提供了一个新的答案,控制随机场中的FDR的问题。通过利用依赖性结构,本提案中开发的方法在寻找标记物时提供了更高的统计功效,因此在后续研究中将测试更少数量的假标记物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schwartzman其他文献
Armin Schwartzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schwartzman', 18)}}的其他基金
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10684184 - 财政年份:2022
- 资助金额:
$ 22.77万 - 项目类别:
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10521915 - 财政年份:2022
- 资助金额:
$ 22.77万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
9204653 - 财政年份:2016
- 资助金额:
$ 22.77万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8445964 - 财政年份:2012
- 资助金额:
$ 22.77万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8799693 - 财政年份:2012
- 资助金额:
$ 22.77万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8236310 - 财政年份:2012
- 资助金额:
$ 22.77万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8633009 - 财政年份:2012
- 资助金额:
$ 22.77万 - 项目类别:
相似海外基金
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 22.77万 - 项目类别:
Small Business Research Initiative
A large cross-disorder study of premorbid estimated intelligence and structural brain imaging in psychiatric disorders
精神疾病病前估计智力和结构脑成像的大型跨疾病研究
- 批准号:
23K07001 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive and brain imaging correlates of apathy- components in asymptomatic middle aged individuals at high ADRD- risk
认知和脑成像与 ADRD 高风险无症状中年个体的冷漠成分相关
- 批准号:
10875019 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
- 批准号:
490288 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Operating Grants
Age-related hearing impairment and brain reserve using brain imaging analysis
使用脑成像分析与年龄相关的听力障碍和大脑储备
- 批准号:
23K16666 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
- 批准号:
10725586 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Transcranial Whole Brain Imaging by Microwave-induced Thermoacoustics
微波诱导热声学经颅全脑成像
- 批准号:
23H03754 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10083773 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别:
Small Business Research Initiative
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 22.77万 - 项目类别: