Cellular decoding of signaling dynamics

信号动力学的细胞解码

基本信息

  • 批准号:
    10684247
  • 负责人:
  • 金额:
    $ 41.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Signaling pathways are fundamental for the ability of cells to correctly respond to extracellular changes and their dysregulation underlies variety of disorders and diseases, most notably cancer. Studies of central signaling pathways revealed that cells encode information in the temporal dynamics of signaling and not just in signaling amplitude. That is, signaling is not merely switched ON or OFF, but is tuned and adjusted to encode meaningful temporal activity profiles (as oscillations, and pulses). This regulated tuning of the core pathway is carried out by a numerous modulator protein that together form a regulatory network of feedback and control loops. A long-standing challenge in cell biology has been to identify the proteins that can modulate temporal profiles of central signaling pathways. Such identification is critical for elucidating cellular decision making in health and its malfunction in disease. A central goal of my lab is to use the well-characterized Ras-Erk pathway as model system to investigate the regulation of signaling dynamics and to uncover their involvement in cancer disease. Multiple studies have substantiated the role of signaling dynamics in this pathway. Yet while much progress was made in elucidating interactions in the core pathway, the understanding of how the surrounding network regulates its dynamics and the role of this type of dysregulation in cancer is lagging far behind. We and others, have recently started to unveil the importance of dysregulation of Ras-Erk dynamics by showing that some oncogenic mutations alter the pathway’s signaling dynamics rather than amplitude. However, while these findings provide a starting point, the high-throughput, systematic study of dysregulation of dynamics remains highly underexplored because of the complexity of monitoring dynamics in live-cells and incompatibility with current screening methods. My lab developed high-throughput microscopy and screening approaches to overcome these technological limitations. We will leverage these platforms to investigate two model in-vitro systems featuring variation in Ras-Erk dynamics: we will investigate the genetic (mutations) mechanisms that underlie unlicensed proliferation (oncogenesis) and non-genetic (transcriptional and signaling states) mechanisms underlying adaptive drug resistance against targeted-therapy. Successful identification of mechanisms underlying Ras-Erk dynamics will both promote the understanding of a very central pathway involved in development and disease and will uncover a new type of targets amenable for therapeutic intervention. These include identifying new mutations driving oncogenesis and uncovering new proteins and interactions that can be targeted to hinder disease progression and drug resistance. Moreover, this research will impact the broad scientific community by demonstrating a strategy and methodology for resolving the intricate connections between signaling dynamics and cell-fate decisions - a connection that emerges as fundamental for many cell decisions and multiple disease.
信号通路是细胞正确响应细胞外变化的基础

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assembling stable syntrophic Escherichia coli communities by comprehensively identifying beneficiaries of secreted goods.
  • DOI:
    10.1016/j.cels.2021.08.002
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Noto Guillen M;Rosener B;Sayin S;Mitchell A
  • 通讯作者:
    Mitchell A
Functional Assay for Measuring Bacterial Degradation of Gemcitabine Chemotherapy.
  • DOI:
    10.21769/bioprotoc.4797
  • 发表时间:
    2023-09-05
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
  • 通讯作者:
Rapid signaling reactivation after targeted BRAF inhibition predicts the proliferation of individual melanoma cells from an isogenic population.
  • DOI:
    10.1038/s41598-021-94941-8
  • 发表时间:
    2021-07-29
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Khoshkenar P;Lowry E;Mitchell A
  • 通讯作者:
    Mitchell A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Mitchell其他文献

Amir Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Mitchell', 18)}}的其他基金

Mechanisms underlying bacterial sensitivity to host-targeted drugs
细菌对宿主靶向药物敏感的机制
  • 批准号:
    10642874
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
Mechanisms underlying bacterial sensitivity to host-targeted drugs
细菌对宿主靶向药物敏感的机制
  • 批准号:
    10501183
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
Cellular decoding of signaling dynamics
信号动力学的细胞解码
  • 批准号:
    10242104
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:
Cellular decoding of signaling dynamics
信号动力学的细胞解码
  • 批准号:
    10462619
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 41.88万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了