Investigation of Intercalated (I) Motif DNA Structure at Telomeric Cytosine-Rich Strand in Human Cells Genetically Altered for DNA Helicases

对 DNA 解旋酶基因改变的人类细胞中端粒富含胞嘧啶链插入 (I) 基序 DNA 结构的研究

基本信息

  • 批准号:
    10688896
  • 负责人:
  • 金额:
    $ 5.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The I-motif is a cytosine-rich DNA sequence that forms a non-canonical DNA structure deviating from the conventional chemical bonding rules that dictate the three-dimensional arrangement of the DNA double helix with strict complementary base pairing (adenine (A): thymine (T); guanine (G): cytosine (C)) and a defined stacking arrangement of the base pairs (bps). Instead, the I-motif forms two intercalated parallel-stranded duplexes held together by hemi-protonated C-C bps. Analysis of the human genome by the computer algorithm Quadparser identified 5,125 DNA sequences that can fold into I-motif structures (also designated C-quadruplex or C4). Most of these C-rich sequences predicted to form C4 are found in telomeres, centromeres, and gene promoter regions. Regulation of genomic I-motif DNA structure is a potential mechanism to modulate gene expression or telomere metabolism with implications for cancer therapy, cellular senescence and aging. Carboxylated single-walled carbon nanotubes (SWNTs) were the first ligand found to selectively stabilize human telomeric I-motif DNA structures, thereby inhibiting telomeric repeat synthesis by telomerase in vitro and in human cells. I-motif stabilization by SWNTs resulted in telomere uncapping and induced a telomeric DNA damage response that led to cell cycle arrest, senescence or apoptosis. Recently, small molecules (in the NCI Diversity Set) were discovered that specifically bind I-motif DNA structures and stabilize them (NSC 1389484 ; NSC 3098745) or bind to the C-rich hairpin, thereby preventing C4 formation (NSC 592764; NSC 1463976). While these compounds were tested for their effects on gene promoter activity, their impact on telomere metabolism was either not addressed or reported. Despite experimental evidence that C4 DNA structures form in vivo and exert unique biological consequences, their molecular metabolic pathways are poorly understood. For example, while work from our lab and others demonstrated that specialized DNA helicases have been characterized for their vital functions to resolve G-quadruplex (G4) DNA formed by G-rich sequences in the human genome, there are no reports that helicase enzymes interact with or catalytically unwind I-motif quadruplexes. Moreover, there have been no studies detailing the effects of I-motif DNA structures on replication in vivo; however, one in vitro study demonstrated that DNA synthesis by the E. coli DNA polymerase fragment Klenow was stalled by a I-motif DNA structure.
I-基序是一个富含胞嘧啶的DNA序列,它形成了一个非规范的DNA结构,不同于传统的化学键规则,该规则规定了DNA双螺旋的三维排列和严格的互补碱基对(腺嘌呤(A):胸腺嘧啶(T);鸟嘌呤(G):胞嘧啶(C))和定义的碱基对堆积排列(Bp)。相反,I基序形成两个插入的平行链双链,通过半质子化的C-Cbps连接在一起。通过计算机算法Quadparser对人类基因组的分析确定了5125个DNA序列,这些DNA序列可以折叠成I基序结构(也称为C-四链或C4)。这些预计会形成C4的富碳序列大多存在于端粒、着丝粒和基因启动子区域。 基因组I基序DNA结构的调节是调节基因表达或端粒代谢的潜在机制,可能与癌症治疗、细胞衰老和衰老有关。羧化的单壁碳纳米管(SWNTs)是第一个被发现选择性稳定人类端粒I基序DNA结构的配体,从而在体外和人类细胞中抑制端粒酶的端粒重复合成。单壁碳纳米管稳定I基序导致端粒解帽,并诱导端粒DNA损伤反应,导致细胞周期停滞、衰老或凋亡。最近,(在NCI多样性集中)发现了专门结合I基序DNA结构并使其稳定的小分子(NSC 1389484;NSC 3098745)或与富含C的发夹结合,从而阻止C4的形成(NSC 592764;NSC 1463976)。虽然这些化合物被测试了它们对基因启动子活性的影响,但它们对端粒新陈代谢的影响要么没有提到,要么没有报道。 尽管实验证据表明C4DNA结构在体内形成并产生独特的生物学后果,但其分子代谢途径尚不清楚。例如,虽然我们和其他实验室的工作表明,专门的DNA解旋酶具有分解人类基因组中富含G的序列形成的G-四链(G4)DNA的重要功能,但还没有解旋酶与I-基序四链相互作用或催化解离的报道。此外,还没有研究详细说明I-基序DNA结构对体内复制的影响;然而,一项体外研究表明,大肠杆菌DNA聚合酶片段Klenow的DNA合成被I-基序DNA结构所阻碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Brosh其他文献

Robert Brosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Brosh', 18)}}的其他基金

Model Genetic Systems to Study DNA Repair
建立遗传系统模型来研究 DNA 修复
  • 批准号:
    7964044
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Fanconi Anemia Pathway
范可尼贫血途径
  • 批准号:
    7964045
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Molecular Characterization of the SARS-CoV-2 Helicase and High-Throughput Screening to Identify Small Molecule SARS-CoV-2 Helicase Inhibitors as Anti-Viral Medicines
SARS-CoV-2 解旋酶的分子表征和高通量筛选以鉴定小分子 SARS-CoV-2 解旋酶抑制剂作为抗病毒药物
  • 批准号:
    10913114
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Function of RecQ helicases in genome stability
RecQ 解旋酶在基因组稳定性中的功能
  • 批准号:
    10913133
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Model Genetic Systems to Study DNA Repair
建立遗传系统模型来研究 DNA 修复
  • 批准号:
    7732313
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Model Genetic Systems to Study DNA Repair
建立遗传系统模型来研究 DNA 修复
  • 批准号:
    10003716
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Molecular Characterization of the SARS-CoV-2 Helicase and High-Throughput Screening to Identify Small Molecule SARS-CoV-2 Helicase Inhibitors as Anti-Viral Medicines
SARS-CoV-2 解旋酶的分子表征和高通量筛选以鉴定小分子 SARS-CoV-2 解旋酶抑制剂作为抗病毒药物
  • 批准号:
    10251673
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Model Genetic Systems to Study DNA Repair
建立遗传系统模型来研究 DNA 修复
  • 批准号:
    10251685
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Roles Of DNA Helicases In Pathways Required For Maintenance Of Genomic Stability
DNA 解旋酶在维持基因组稳定性所需途径中的作用
  • 批准号:
    8148305
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:
Model Genetic Systems to Study DNA Repair
建立遗传系统模型来研究 DNA 修复
  • 批准号:
    8335918
  • 财政年份:
  • 资助金额:
    $ 5.77万
  • 项目类别:

相似海外基金

The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
  • 批准号:
    10633608
  • 财政年份:
    2023
  • 资助金额:
    $ 5.77万
  • 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
  • 批准号:
    10534031
  • 财政年份:
    2022
  • 资助金额:
    $ 5.77万
  • 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
  • 批准号:
    10794933
  • 财政年份:
    2022
  • 资助金额:
    $ 5.77万
  • 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
  • 批准号:
    21K05120
  • 财政年份:
    2021
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
  • 批准号:
    10365337
  • 财政年份:
    2021
  • 资助金额:
    $ 5.77万
  • 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
  • 批准号:
    10033546
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
  • 批准号:
    10613902
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
  • 批准号:
    10396102
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
  • 批准号:
    10226235
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
  • 批准号:
    10705982
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了