A Computer Vision Lifting Monitor
计算机视觉升降监视器
基本信息
- 批准号:10693977
- 负责人:
- 金额:$ 51.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/ Abstract
Repetitive manual lifting is a significant occupational health and safety concern and is highly prevalent in
warehousing, distribution centers, package delivery, transportation, and lean manufacturing. These types of
tasks are the most challenging to analyze from an ergonomics perspective, particularly in multi-task situations
where lifting varied items occurs in numerous locations, involving variable body postures throughout the workday.
Manually measuring the parameters needed for analysis is challenging and resource intensive for industry
practitioners today. The overarching goal of this research is to create a computer vision risk model for lifting,
incorporate it into a prototype instrument, and field evaluate the instrument in comparison to conventional RNLE
methods. Automated job analysis potentially offers a more objective, accurate, repeatable, and efficient exposure
assessment tool than conventional observational methods. Furthermore, it provides convenient quantification of
additional exposure variables, including lifting kinematics (i.e., speed and acceleration) individual differences,
and postures; is suitable for long-term, direct reading exposure assessment; and offers animated data
visualization synchronized with video for identifying interventions. This research translates already collected
videos of jobs and corresponding health outcomes from a landmark prospective study database for computer
vision lower back pain risk assessment. It leverages the vast database of videos and corresponding exposure
measures and health data for lifting and lowering activities (i.e., subtasks) performed by 772 workers across the
three cohort studies, collected by our study partners at NIOSH, the University of Utah, and the University of
Wisconsin-Milwaukee. They are part of a multi-institutional NIOSH funded consortium of U.S. laboratories that
recently studied workers in a wide variety of industries in a prospective epidemiology study on lower back pain.
The consortium videos will be analyzed by extracting the new video feature exposure measures, including lifting
postures, and torso and load kinematics. The video exposure assessment data will be combined with consortium
observational exposure measures and health outcome data. We will test the hypothesis that adding computer
vision exposure variables with consortium exposure variables can enhance performance of predicting lower back
pain. This project will refine and program video exposure assessment algorithms for posture classification, torso
angle and trunk and load kinematics into a prototype device. The new exposure algorithms will be tested in
selected industrial sites and compared against conventional observational methods for consistency and utility
(r2p). This translational research offers an unprecedented opportunity to exploit unique videos and associated
exposure and health outcome data already collected, in combination with new technology for quantifying
exposures. This research addresses the manufacturing, and the transportation, warehousing, and utilities NORA
sectors, as well as the musculoskeletal health cross sector agendas.
项目总结/摘要
重复的手动提升是一个重要的职业健康和安全问题,
仓储、配送中心、包裹递送、运输和精益制造。这些类型的
从人机工程学的角度来看,任务是最具挑战性的分析,特别是在多任务的情况下
其中,在许多位置发生提升不同的物品,在整个工作日中涉及可变的身体姿势。
手动测量分析所需的参数对于工业来说是具有挑战性的并且是资源密集型的
今天的从业者这项研究的总体目标是创建一个计算机视觉风险模型,
将其纳入原型仪器,并与传统RNLE进行比较,对仪器进行现场评估
方法.自动化作业分析可能提供更客观、准确、可重复和有效的曝光
与传统的观察方法相比,此外,它还提供了方便的量化方法,
另外的暴露变量,包括提升运动学(即,速度和加速度)个体差异,
和姿势;适用于长期、直接阅读暴露评估;并提供动画数据
与视频同步的可视化,用于识别干预措施。本研究翻译已收集
具有里程碑意义的前瞻性计算机研究数据库中的工作和相应健康结果视频
视力下背痛风险评估。它利用了庞大的视频数据库和相应的曝光率
用于提升和降低活动的测量和健康数据(即,由772名工人在整个
三项队列研究,由我们在NIOSH、犹他州大学和犹他州大学的研究伙伴收集。
威斯康星州密尔沃基。他们是NIOSH资助的多机构美国实验室联盟的一部分,
最近在一项关于下背痛的前瞻性流行病学研究中,研究了各种行业的工人。
该联盟的视频将通过提取新的视频特征曝光措施进行分析,包括解除
姿势、躯干和负载运动学。视频曝光评估数据将与联合体
观察性暴露措施和健康结果数据。我们将检验一个假设,
视觉暴露变量与联合体暴露变量可以提高预测下背部的性能
痛苦这个项目将完善和程序视频曝光评估算法的姿势分类,躯干
角度和躯干并将运动学加载到原型设备中。新的曝光算法将在
选定的工业地点,并与传统的观测方法进行比较,以确保一致性和实用性
(r2p)。这种转化研究提供了前所未有的机会,利用独特的视频和相关的
已经收集的暴露和健康结果数据,结合新的量化技术,
暴露。本研究针对制造业、运输业、仓储业、公用事业诺拉业
各部门以及肌肉骨骼健康跨部门议程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay M Kapellusch其他文献
Jay M Kapellusch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Collaborative R&D
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Standard Grant
Professional Visionの可視化による英語教師認知の形成・変容過程の解明
从专业视野可视化阐释英语教师认知的形成与转化过程
- 批准号:
24K00089 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Teachers Learning to be Technology Accessibility Allies to Blind and Low-Vision Students in Science
职业:教师学习成为盲人和低视力学生在科学领域的技术无障碍盟友
- 批准号:
2334693 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Continuing Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
2349386 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Standard Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Research Grant
Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
- 批准号:
24K20867 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 51.81万 - 项目类别:
Standard Grant














{{item.name}}会员




