A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging

一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Three-dimensional ultrasound imaging (3D-US) is an essential clinical tool for visualizing, navigating, and investigating patient anatomy and pathologies in real time in 3D. Owing to its moderate cost and lack of ionizing radiation, 3D-US plays an important role in many clinical applications for diagnosis and intervention. Despite the significant clinical value and potential, 3D-US is not a widely accessible and capable technology with its current implementations: existing 3D-US solutions are challenged by many limitations such as low imaging speed, low functionality, bulky devices that are inconvenient to use, and a high cost of designated equipment. For decades, there has been a long-standing quest for developing an accessible, functional, and user-friendly 3D-US technology. In this proposal, we will develop a new 3D-US solution (called FASTER) that uses a novel, fast-tilting microfabricated acoustic reflector to achieve high-speed and high-functionality 3D-US imaging. The acoustic reflector is water-immersible and enclosed in a clip-on device that is compact, lightweight, and low-cost. It can be easily attached to and removed from different types of ultrasound transducers to turn a conventional 2D ultrasound system into 3D. Unlike conventional 3D-US technologies (e.g., wobbler transducers and 2D matrix arrays), FASTER does not require the procurement of additional ultrasound transducers for different applications. Also, FASTER achieves a much higher imaging volume rate (up to 1000 Hz) than conventional 3D-US technologies. FASTER is compatible with most ultrasound systems on the market ranging from premium scanners to portable and handheld devices. In this proposal, we will conduct basic technology development research and carry out preliminary clinical studies to build a solid technical foundation for the FASTER 3D-US technology. In Aim 1 we will focus on developing the Phase-1 FASTER device that uses a double-axis reflector for extended range of imaging volume rate and field-of-view (FOV). We will also develop Phase-1 FASTER into a stand-alone device that does not need external equipment and communicates wirelessly with the ultrasound system. Aim 2 will focus on developing advanced imaging modes for FASTER, including 3D blood flow imaging (3D-BFI) and 3D shear wave elastography (3D-SWE). Pilot clinical studies will be conducted for both Aims 1 and 2 to facilitate the development and optimization of the FASTER device and imaging sequences. In Aim 3 we will conduct a clinical study to evaluate the performance of FASTER 3D-US in characterizing suspicious axillary lymph nodes (ALNs) for breast cancer patients undergoing clinically indicated biopsy of ALN. We will also evaluate the performance of FASTER in localizing clipped ALNs from patients undergoing neoadjuvant chemotherapy. The study aims will be carried out by a team of experts in ultrasound imaging, micro sensors and systems, medical device design, and breast cancer from the campuses of University of Illinois Urbana- Champaign, Texas A&M University, and Mayo Clinic.
项目摘要/摘要 三维超声成像(3D-US)是一种重要的临床工具,用于可视化、导航和 在3D中实时研究患者的解剖和病理。由于其成本适中,且缺乏电离 3D-US在许多诊断和介入的临床应用中发挥着重要的作用。尽管 巨大的临床价值和潜力,3D-US并不是一项广泛可用和有能力的技术,因为它目前 实施:现有的3D-US解决方案受到许多限制的挑战,如成像速度低、 功能,笨重的设备,不方便使用,以及指定设备的高昂成本。几十年来, 长期以来,人们一直在寻求开发一种可访问、功能强大且用户友好的3D-US 技术在这份提案中,我们将开发一种新的3D-US解决方案(称为FASTER),它使用一种新颖的快速倾斜 微制造声反射器,实现高速和高功能的3D-US成像。声学的 反射器是浸水的,封闭在一个紧凑、轻巧和低成本的夹式装置中。它可以 可轻松连接和拆卸不同类型的超声换能器,从而使传统的2D 将超声系统转换为3D。不同于传统的3D-US技术(例如,摆动换能器和2D矩阵 阵列),FASH不需要为不同的应用采购额外的超声换能器。 此外,与传统的3D-US相比,FAST实现了更高的成像体积速率(高达1000赫兹) 技术。FASTER与市场上大多数超声系统兼容,范围从高级 从扫描仪到便携式和手持设备。在这项提案中,我们将进行基础技术开发 研究和开展初步临床研究,为更快的3D-US奠定坚实的技术基础 技术在目标1中,我们将专注于开发使用双轴反射器的第一阶段更快的设备 用于扩展成像容积率和视场(FOV)范围。我们还将更快地将第一阶段开发为 一种不需要外部设备并与超声波无线通信的独立设备 系统。Aim 2将专注于开发先进的成像模式,以实现更快的速度,包括3D血流成像 (3D-BFI)和三维剪切波弹性成像(3D-SWE)。将对AIMS 1和AIMS进行试点临床研究 2以促进更快的设备和成像序列的开发和优化。在《目标3》中,我们将 开展一项临床研究以评估FASH 3D-US在确定可疑腋窝方面的表现 乳腺癌患者接受临床指征的淋巴结活组织检查。我们还将 评估FASTER在定位接受新辅助治疗患者的夹闭的ALN方面的性能 化疗。这项研究的目标将由一个超声成像、微型传感器和 伊利诺伊大学厄巴纳分校的系统、医疗器械设计和乳腺癌- 香槟、德克萨斯农工大学和梅奥诊所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pengfei Song其他文献

Pengfei Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pengfei Song', 18)}}的其他基金

High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 52.91万
  • 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
  • 批准号:
    10587466
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
Next-Generation Ultrasound Localization Microscopy
下一代超声定位显微镜
  • 批准号:
    10039725
  • 财政年份:
    2020
  • 资助金额:
    $ 52.91万
  • 项目类别:
Early prediction of colorectal liver metastases treatment response with ultrasound microvessel imaging
超声微血管成像早期预测结直肠肝转移治疗反应
  • 批准号:
    10084826
  • 财政年份:
    2017
  • 资助金额:
    $ 52.91万
  • 项目类别:

相似海外基金

CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
  • 批准号:
    2237309
  • 财政年份:
    2023
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
  • 批准号:
    2815310
  • 财政年份:
    2023
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
  • 批准号:
    2329865
  • 财政年份:
    2023
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
  • 批准号:
    RGPIN-2020-04415
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
  • 批准号:
    10587466
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
  • 批准号:
    10670956
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
  • 批准号:
    10509562
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
  • 批准号:
    547186-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
  • 批准号:
    574470-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    University Undergraduate Student Research Awards
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
  • 批准号:
    547186-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了