Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10707926
- 负责人:
- 金额:$ 23.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdministratorAdoptedAgreementBiological MarkersBiological SciencesCodeCollaborationsCollectionCommunicationCommunitiesComplexComputer SecurityComputer softwareDataData AnalysesData CollectionData ScienceData SetDatabasesDedicationsDevelopmentDirectoriesDoctor of PhilosophyEarth scienceEducationEducational workshopElectronicsEnsureFosteringGeoscienceGoalsHealthHealth SciencesHeartIndividualInformation SystemsInfrastructureLeadMethodsMissionNeeds AssessmentOntologyOutcomeOwnershipPerformancePlanet EarthPolicy MakingPositioning AttributeProceduresProcessProtocols documentationQuality ControlReportingReproducibilityReproducibility of ResultsResearchResearch DesignResearch PersonnelResourcesScienceSecurityServicesSignal Recognition ParticleSourceSpecialistSpecific qualifier valueStatistical MethodsStatistical ModelsSuperfundSynchrotronsSystemTechniquesTechnologyTestingTime trendTrainingTranslationsTribesUnited States Indian Health ServiceUniversitiesVisualizationWater PollutantsWorkanalysis pipelinecitizen sciencecommunity engagementcomplex datadata accessdata communicationdata harmonizationdata integrationdata interoperabilitydata managementdata miningdata qualitydata resourcedata sharingeducation resourcesexperiencehigh dimensionalityimprovedinnovationinteroperabilitymachine learning methodmeetingsmembermethod developmentmultidimensional dataoperationoutreach programphysical modelprogramspublic databasequality assuranceremote sensingrepositorysearchable databasetooltrend analysistribal communityuser friendly softwareuser-friendlywater qualityweb based interfaceweb pageweb portalweb site
项目摘要
DMAC Summary
The Data Management and Analysis Core (DMAC) will ensure wide accessibility of the complex and integrated
health and earth science data generated within the Columbia University Northern Plains Superfund Research
Program (CUNP-SRP). These efforts will be guided by an overarching mission to treat and share data
according to the principles of tribal data sovereignty and the research code set in place by our partnering
communities in the Northern Plains. The DMAC will dedicate significant resources to supporting application of
existing analysis methods, developing innovative analysis techniques, and ensuring long-term reproducibility of
results by leveraging statistical and data science expertise. The DMAC is centrally positioned in the CUNP-SRP
and will serve all Projects and Cores, including the Community Engagement Core (CEC) and Research
Experience and Training Coordination Core (RETCC), through three aims. Aim 1 will integrate and enhance
data management, sharing, and interoperability. We will use established capabilities of the Data Management
Unit at Columbia University to develop customized data management and quality assurance plans for each
Project/Core, manage data collection and databases, coordinate and harmonize datasets, and provide for their
efficient querying. The DMAC will create streamlined data communication across Projects and with external
partners and data requestors, following appropriate procedures approved by our partnering tribal communities,
by creating an integrated webpage that provides central access to the databases and offers advanced search
capabilities. The webpage will act as a platform to locate, access, and mine data while meeting the data sharing
requirements of each study. We will also share data via this Database Directory and will work with investigators,
data owners, and governmental or policymaking agencies to locate additional available online data resources.
Aim 2 will expand statistical resources, data analysis capability, and reproducibility tools. DMAC will
provide expertise in established methods for data analysis including statistical and physical modeling. It will also
support development of innovative methods, particularly in complex and high-dimensional data inherent to omics
research and to complex environmental and geospatial research. Additionally, DMAC will develop, test, and
apply robust implementations of new methods for complex data and ensure long-term reproducibility of findings
through containerized analysis pipelines. Aim 3 will educate investigators, trainees, and citizen scientists
in data sovereignty, sharing, management and analysis. DMAC will collaborate with the RETCC to organize
workshops, seminars, and other educational opportunities. Methods, results, and educational resources will be
shared with all stakeholders via CUNP-SRP outreach through the CEC, Admin Core, and including the DMAC
webpage. Procedures established by DMAC will strive to meet the needs of all investigators and partnering
communities, adding substantial value to our collaborations within the CUNP-SRP, across other SRP centers,
and to the wider community.
DMAC总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur J Goldsmith其他文献
Arthur J Goldsmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur J Goldsmith', 18)}}的其他基金
Generalized, multilevel functional response models applied to accelerometer data.
应用于加速度计数据的广义多级功能响应模型。
- 批准号:
8891025 - 财政年份:2015
- 资助金额:
$ 23.19万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 23.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 23.19万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 23.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 23.19万 - 项目类别:
Research Fellowships














{{item.name}}会员




