Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
基本信息
- 批准号:10707354
- 负责人:
- 金额:$ 33.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAccelerationAddressAdipose tissueAdultAdvanced DevelopmentAffectAgeAgingAgreementAnatomyArchitectureAreaArtificial IntelligenceAtlasesBaltimoreBiologicalBlack raceBody CompositionBody RegionsBone DensityBone structureCardiovascular DiseasesClassificationClinical DataClinical TrialsCommunitiesComputer AssistedComputer softwareCoronary ArteriosclerosisDataData SetDegenerative polyarthritisDescriptorDeteriorationDevelopmentDiabetes MellitusDiagnosisDiagnosticDictionaryDiseaseEpidemicFemaleHealth Care CostsHispanicHumanHuman bodyImageImage AnalysisImaging technologyInfiltrationInterventionJointsLinkLongitudinal StudiesLower ExtremityMachine LearningMagnetic Resonance ImagingManualsMeasuresMedical ImagingMetabolicMetabolic DiseasesMetabolic dysfunctionMetabolic syndromeMethodsMicroscopicMinority AccessMinority GroupsModernizationMonitorMorphologyMuscleNon-Insulin-Dependent Diabetes MellitusNot Hispanic or LatinoObesityOsteoporosisParticipantPathologistPathologyPatternPersonsPhenotypePhysiologicalPrevalencePrincipal InvestigatorProcessPrognosisPropertyQuality of lifeReaderResearchRiskRisk FactorsRisk ReductionSkeletal MuscleSoftware ToolsSource CodeStrokeTechniquesTestingTherapeuticTimeTissuesTrainingUnderserved PopulationUnited StatesVisualizationWorkX-Ray Computed Tomographyage relatedautomated image analysisboneclinical decision-makingclinical imagingcost effectivedeep learningdesigndiabetes controldisease diagnosisepidemiology studyethnic minorityhealth care qualityhealth equityimaging biomarkerimaging studyimprovedin vivoinnovationinterestlearning strategymachine learning methodmalemathematical methodsmetabolic ratemorphometrymuscle formmuscle strengthnovelopen sourcepharmacologicpreservationprogramsquantitative imagingracial minorityradiological imagingradiologistradiomicsresearch and developmentsarcopeniastatistical learningsubstantia spongiosa
项目摘要
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
Specific Aims
Age-related and metabolic diseases such as type-2 diabetes mellitus (T2DM),
cardiovascular disease (CVD), obesity, osteoporosis and sarcopenia have become a worldwide
epidemic that affects the quality of life of millions. To give a global perspective, roughly 343.8
million people in the world have type-2 diabetes today, and 175 million do not know they have diabetes at all. Metabolic
diseases, such as diabetes and obesity, are strongly linked to longitudinal changes in body composition, morphology and
function. Changes in skeletal muscle composition are strongly linked to loss in muscle strength and mass, frequently
termed as sarcopenia, leading to decreased mobility and function. The accumulation of adipose tissue in the human body
and changes of its regional distribution are associated with type-2 diabetes, cardiovascular disease and the metabolic
syndrome.
Contemporary imaging studies that are performed in vivo on a large number of participants have enabled cross
sectional and longitudinal studies of age-related and metabolic diseases, and effects of pharmacological interventions.
The emergence of advanced imaging technologies has also created the need for automated image analysis techniques for
identification and quantification of morphological patterns of anatomies and tissues and their changes with increasing
age.
This project will contribute novel and non-invasive medical image analysis techniques for studying the human
body composition to achieve timely diagnosis of these pathologies. Our research interests will concentrate on
identification of morphological patterns in the lower extremity that will eventually lead to development of imaging
biomarkers. We will use imaging and clinical data collected by the Baltimore Longitudinal Study of Aging (BLSA) that
is the longest ongoing epidemiology study in the US, as well as publicly available datasets. We will build on recent
advances in medical image analysis to contribute novel and non-invasive techniques for studying the human body
composition and its changes (aim 1). Then we will develop machine learning methods for timely diagnosis and prognosis
of metabolic and age-related diseases (aim 2). We will implement these techniques as open-source software for further
use and development by the research community (aim 3).
基于机器学习的代谢和代谢相关疾病的成像生物标志物
具体目标
糖尿病相关和代谢性疾病,如2型糖尿病(T2DM),
心血管疾病(CVD)、肥胖症、骨质疏松症和肌肉减少症已经成为世界范围内的
这是一种影响数百万人生活质量的流行病。从全球角度来看,大约343.8
今天,世界上有100万人患有2型糖尿病,1.75亿人根本不知道自己患有糖尿病。代谢
疾病,如糖尿病和肥胖症,与身体组成、形态和
功能骨骼肌组成的变化与肌肉力量和质量的损失密切相关,
称为肌肉减少症,导致活动性和功能下降。人体内脂肪组织的堆积
其区域分布的变化与2型糖尿病、心血管疾病和代谢紊乱有关。
综合征
在大量参与者体内进行的当代成像研究使得能够进行交叉成像。
年龄相关和代谢性疾病的横断面和纵向研究,以及药物干预的效果。
先进成像技术的出现也产生了对自动化图像分析技术的需求,
解剖结构和组织的形态学模式的识别和量化,以及它们随着
年龄
该项目将为研究人类提供新颖的非侵入性医学图像分析技术
身体组成,以实现这些病理的及时诊断。我们的研究兴趣将集中在
下肢形态模式的识别,最终将导致成像的发展
生物标志物。我们将使用巴尔的摩老龄化纵向研究(BLSA)收集的成像和临床数据,
是美国持续时间最长的流行病学研究,以及公开可用的数据集。我们将建立在最近
医学图像分析的进展,为研究人体提供新的非侵入性技术
其组成及其变化(目标1)。然后我们将开发机器学习方法,用于及时诊断和预后
代谢和年龄相关疾病(目标2)。我们将把这些技术作为开源软件来实现,
研究界的使用和发展(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sokratis Makrogiannis其他文献
Sokratis Makrogiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sokratis Makrogiannis', 18)}}的其他基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 33.11万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 33.11万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
8854343 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10663229 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
9044803 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10465018 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10089865 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
$ 33.11万 - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
$ 33.11万 - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
$ 33.11万 - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
$ 33.11万 - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
$ 33.11万 - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
$ 33.11万 - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
$ 33.11万 - 项目类别:
Postdoctoral Fellowships