QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES

用于研究衰老表型和年龄相关疾病的定量图像分析技术

基本信息

  • 批准号:
    9044803
  • 负责人:
  • 金额:
    $ 6.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-02 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Tissue identification and quantification plays a significant role in the study of aging and age-related diseases. For example, the accumulation of fat in the human body and its regional distribution with aging is associated with type 2 diabetes and cardiovascular diseases. Changes in muscle composition are strongly linked to decline of muscle strength, decreased mobility caused by aging, or musculoskeletal disorders. Especially interesting is analysis of longitudinal changes of morphometric descriptors that is significant for studying the aging process and for the diagnosis and prevention of age-related diseases. Medical imaging has emerged as a major tool for estimation of body composition mainly due to being non- invasive and producing multi-dimensional information. Nowadays MRI and CT acquisition is a central component of clinical trials. An abundance of imaging data is collected, but this wealth of information has not been utilized to full extent. Therefore research on image analysis techniques for tissue quantification that are reproducible and can be used on large-scale clinical trials is of particular importance. The technical hypothesis of this work is that quantitative image processing can robustly and accurately segment, register, and fuse body composition data from modern MRI and CT imaging. The central hypothesis of this proposal is that qualitative body composition phenotypes on clinical imaging will differentiate individuals who are healthy versus those who are not. The goal of our work is to provide a foundation for image analysis of the abdomen and lower extremities and to study the relationship between body morphological changes and age-related pathologies. We will build upon recent advances in medical image computing to segment muscle, regional adipose tissue, and bone in clinical CT and MRI scans. We will also develop image registration procedures to achieve intra- and inter-subject correspondence and make efficient use of information provided by multi-modal and multi-temporal imaging data collected in clinical trials (aim 1). After these methods have been developed, we will address the hypothesis that quantitative use of clinical imaging can increase the prognostic accuracy of age-related pathologies (aim2).
 描述(由申请人提供):组织鉴定和定量在衰老和年龄相关疾病的研究中发挥着重要作用。例如,人体内脂肪的积累及其随衰老的区域分布与2型糖尿病和心血管疾病有关。肌肉成分的变化与肌肉力量下降、衰老引起的活动能力下降或肌肉骨骼疾病密切相关。特别有趣的是形态测量描述符的纵向变化的分析,这对于 研究衰老过程以及诊断和预防与年龄相关的疾病。 医学成像已成为估计身体成分的主要工具,主要是因为它是非侵入性的并产生多维信息。如今,MRI 和 CT 采集是临床试验的核心组成部分。收集了大量的成像数据,但这些丰富的信息尚未得到充分利用。因此,研究可重复且可用于大规模临床试验的组织定量图像分析技术显得尤为重要。 这项工作的技术假设是定量图像处理可以稳健而准确地分割、注册和融合来自现代 MRI 和 CT 成像的身体成分数据。该提案的中心假设是,临床成像上的定性身体成分表型将区分健康个体和不健康个体。我们工作的目标是为腹部和下肢的图像分析提供基础,并研究身体形态变化与年龄相关病理之间的关系。 我们将利用医学图像计算的最新进展,在临床 CT 和 MRI 扫描中分割肌肉、区域脂肪组织和骨骼。我们还将开发图像配准程序,以实现受试者内和受试者间的对应,并有效利用临床试验中收集的多模态和多时相成像数据提供的信息(目标1)。在开发这些方法后,我们将提出这样的假设:临床成像的定量使用可以提高与年龄相关的病理的预后准确性(目标2)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sokratis Makrogiannis其他文献

Sokratis Makrogiannis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sokratis Makrogiannis', 18)}}的其他基金

Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
  • 批准号:
    10707354
  • 财政年份:
    2022
  • 资助金额:
    $ 6.36万
  • 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
  • 批准号:
    10556825
  • 财政年份:
    2022
  • 资助金额:
    $ 6.36万
  • 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
  • 批准号:
    10893258
  • 财政年份:
    2022
  • 资助金额:
    $ 6.36万
  • 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
  • 批准号:
    8854343
  • 财政年份:
    2015
  • 资助金额:
    $ 6.36万
  • 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
  • 批准号:
    10663229
  • 财政年份:
    2015
  • 资助金额:
    $ 6.36万
  • 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
  • 批准号:
    10465018
  • 财政年份:
    2015
  • 资助金额:
    $ 6.36万
  • 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
  • 批准号:
    10089865
  • 财政年份:
    2015
  • 资助金额:
    $ 6.36万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了