Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
基本信息
- 批准号:10465018
- 负责人:
- 金额:$ 10.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-02 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdipose tissueAdultAffectAgeAgingAgreementAnatomyAreaAtlasesBaltimoreBiological MarkersBody CompositionBone structureCardiovascular DiseasesClassificationClinicalClinical DataComputational TechniqueComputer AssistedCoronary ArteriosclerosisCross-Sectional StudiesDataData SetDescriptorDeteriorationDevelopmentDiabetes MellitusDiagnosisDiagnosticDictionaryDiseaseDoctor of MedicineDoctor of PhilosophyEndocrinologyEpidemicEpidemiologyGerontologyHumanHuman bodyImageImage AnalysisImaging technologyInterventionLeadLegLinkLongitudinal StudiesMagnetic Resonance ImagingMeasuresMedicalMedical ImagingMetabolicMetabolic DiseasesMetabolic syndromeMethodsModernizationMonitorMorphologic artifactsMorphologyMuscleNoiseNon-Insulin-Dependent Diabetes MellitusNormal tissue morphologyObesityOrganOsteoporosisParticipantPathologyPatternPennsylvaniaPersonsPharmacologyPhenotypePhysicsPhysiologicalPopulation StudyPrevalencePrincipal InvestigatorProcessPrognosisPropertyQuality of lifeResearchRiskRisk FactorsShapesSkeletal MuscleStrokeTechniquesTestingTherapeutic InterventionThigh structureTimeTissue ModelTissuesUnited StatesUnited States National Institutes of HealthVisualizationWorkX-Ray Computed Tomographyage relatedautomated image analysisbaseclinical imagingdeep learningdisease diagnosticdisorder riskepidemiology studyfracture riskimaging biomarkerimaging modalityimaging studyin vivointerestintervention effectlearning strategylongitudinal analysismachine learning methodmathematical methodsmedical schoolsmetabolic abnormality assessmentmodels and simulationmorphometrymuscle formmuscle strengthnovelpandemic diseasepre-clinicalpredictive testprognosis biomarkerprogramsquantitative imagingradiological imagingsarcopeniasimulationstatistical and machine learningstatistical learningsubstantia spongiosaultrasoundvirtual
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Makrogiannis, Sokratis, Ph.D.
Abstract
Age-related and metabolic diseases such as type-2 diabetes, cardiovascular diseases, and sarcopenia have
become a worldwide epidemic that affects the quality of life of millions. To give a global perspective, roughly
343.8 million people in the world have type-2 diabetes today, and 175 million do not know they have diabetes at
all. Metabolic diseases, such as diabetes and osteoporosis, are strongly linked to longitudinal changes in body
composition, morphology and function.
Modern medical imaging technologies offer the opportunity to study the composition and morphometry of
human body in ways that were previously impossible. Contemporary imaging studies that are performed in vivo
on a large number of participants have enabled cross-sectional and longitudinal studies of age-related and
metabolic diseases, and effects of pharmacological interventions. The emergence of advanced imaging
technologies has also created the need for automated image analysis techniques for identification and
quantification of morphological patterns of anatomies and tissues and their changes with increasing age.
This project will contribute novel and non-invasive medical image analysis techniques for studying the human
body composition to achieve timely prognosis of these pathologies. Our research interests will concentrate on
identification of morphological patterns in the mid-thigh, abdomen and lower leg that will eventually lead to
development of imaging biomarkers. The accumulation of adipose tissue in the human body and changes of its
regional distribution are associated with type-2 diabetes, cardiovascular diseases and the metabolic syndrome.
Age-related changes in skeletal muscle composition are strongly linked to loss in muscle strength and mass,
frequently termed as sarcopenia, leading to decreased mobility and function. Also, trabecular bone structural
changes are associated with osteoporosis. We will use imaging and clinical data collected by the Baltimore
Longitudinal Study of Aging (BLSA) that is the longest ongoing epidemiology study in the US.
This work will address a technical and a clinical hypothesis. The technical hypothesis is that quantitative
image analysis can accurately and robustly segment, register and fuse body composition data acquired by
modern MRI and CT imaging scanners. The clinical hypothesis is that qualitative body composition phenotypes
on clinical imaging can be used as biomarkers for prognosis and diagnosis of the metabolic syndrome
manifestations. We will build on recent advances in medical image analysis to contribute novel and non-invasive
techniques for studying the human body composition and its longitudinal changes with main applications in tissue
identification and quantification at the mid-thigh, lower leg and the abdomen (aim 1). Then we will develop
statistical machine learning methods to achieve timely diagnosis and prognosis of metabolic and age-related
conditions including the metabolic syndrome and osteoporosis, and to track the effect of interventions (aim 2).
OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015)Page Continuation Format Page
项目负责人/主要研究者(最后,第一,中间):Makrogiannis,Sokratis,Ph.D.
摘要
糖尿病相关和代谢性疾病,如2型糖尿病、心血管疾病和肌肉减少症,
成为影响数百万人生活质量的世界性流行病。从全球的角度来看,
今天,全世界有3.438亿人患有2型糖尿病,1.75亿人不知道他们患有糖尿病。
所有.代谢性疾病,如糖尿病和骨质疏松症,与身体的纵向变化密切相关。
组成、形态和功能。
现代医学成像技术提供了机会,研究的组成和形态,
以一种以前不可能的方式进入人体。在体内进行的当代成像研究
对大量参与者的研究使得对年龄相关和
代谢疾病和药物干预的影响。先进成像技术的出现
技术的发展也产生了对用于识别和
解剖结构和组织的形态学模式的量化及其随年龄增长的变化。
该项目将为研究人类提供新颖的非侵入性医学图像分析技术
身体组成,以实现这些病理的及时预后。我们的研究兴趣将集中在
确定大腿中部、腹部和小腿的形态模式,最终导致
成像生物标志物的发展。脂肪组织在人体内的积累及其变化
区域分布与2型糖尿病、心血管疾病和代谢综合征有关。
骨骼肌组成中的骨骼肌相关变化与肌肉力量和质量的损失密切相关,
通常称为肌肉减少症,导致活动能力和功能下降。此外,骨小梁结构
变化与骨质疏松症有关。我们将使用巴尔的摩收集的成像和临床数据
老龄化纵向研究(BLSA)是美国持续时间最长的流行病学研究。
这项工作将解决一个技术和临床假设。技术假设是,
图像分析可以准确且鲁棒地分割、配准和融合通过以下方式获取的身体组成数据:
现代MRI和CT成像扫描仪。临床假设是,定性身体组成表型
可作为代谢综合征预后和诊断的生物标志物
表现。我们将在医学图像分析的最新进展的基础上,
研究人体成分及其纵向变化的技术,主要应用于组织
在大腿中部、小腿和腹部进行识别和定量(目标1)。然后我们将开发
统计机器学习方法,以实现代谢和年龄相关的及时诊断和预后
包括代谢综合征和骨质疏松症在内的疾病,并跟踪干预措施的效果(目标2)。
OMB编号0925-0001/0002(2012年8月批准至2015年8月31日修订版)页码续页格式页码
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sokratis Makrogiannis其他文献
Sokratis Makrogiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sokratis Makrogiannis', 18)}}的其他基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
8854343 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10663229 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
9044803 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10089865 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 10.95万 - 项目类别:
Research Grant