Advancing technologies for the collection and analysis of high dimensional immunoprofiles and tumor images
先进的高维免疫图谱和肿瘤图像收集和分析技术
基本信息
- 批准号:10707358
- 负责人:
- 金额:$ 17.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAreaAtlasesCancer BiologyCancer CenterCell CommunicationCellsClinicClinical TrialsCollaborationsCollectionCore BiopsyDataDiagnosisDiseaseDisease ManagementDoctor of PhilosophyEnvironmentFine needle aspiration biopsyFormaldehydeFundingGoalsHumanImageImmune systemImmunofluorescence ImmunologicJournalsLaboratoriesLeadLicensingMethodsMicroscopyMolecularMorphologyMusParaffin EmbeddingPatientsPeriodicityPharmacologyPlayProtocols documentationPublic DomainsPublicationsPublishingResearchResearch SupportResolutionRoleSlideSolid NeoplasmSpecialistSpecimenStagingStructureSystemTechnologyThree-Dimensional ImagingTissue PreservationTissue imagingTissuesTranscriptWorkcancer imagingcancer initiationcell typedesigndigital pathologyhigh dimensionalityhigh resolution imagingimmunological synapseimprovedinsightinventionmass spectrometric imagingnovel strategiesperformance siteprotein biomarkersresearch and developmenttechnology developmenttreatment responsetumortumor progression
项目摘要
SUMMARY-ABSTRACT
The overall goal of this proposal is to use highly multiplexed, high-resolution imaging of
tissues and tumors to deeply characterize the microenvironments of diverse solid tumors being
studied by NCI-funded collaborators at the Harvard Laboratory of Systems Pharmacology
(LSP), Dana Farber/Harvard Cancer Center and four other NCI cancer centers. The PI of this
proposal, Research Specialist Jerry Lin PhD, invented tissue-based cyclic immunofluorescence
(CyCIF) in 2018 and has made it the leading public domain (license-free) method for performing
high-plex tissue analysis. He has adapted the method to high resolution 3D imaging of selected
fields of view (~103 cells using deconvolution microscopy) as well as rapid analysis of whole
slides (~106 cells) at lower resolution. As developed CyCIF can collect data from 20-60 protein
markers from a single specimen making it possible to identify cell types and states in a
preserved tissue environment. It can also image structures as small as immune synapses
allowing cell-cell interactions to be analyzed at a functional level. Dr. Lin’s work directly supports
research by 18 NCI-funded laboratories and the CyCIF protocols he has published are used by
multiple other labs working independent of the HMS team. Dr. Lin also performs his own
research as part of a Human Tumor Atlas Network Trans Network Project that conceived and
now leads. These activities have resulted in 20 collaborative publications over the past three
years including several in high impact journals with Dr. Lin as first or co-first author.
As part of this R50 proposal Dr Lin will engage in three primary activities. First, he will
continue to collaborate with research groups to acquire CyCIF data at different stages before
and after treatment. This is will make it possible to identify molecular and morphological features
associated with disease initiation, progression, and therapeutic response. Second, he will
continue to improve the CyCIF method and integrate it with other methods for spatial
interrogation of human and murine tumors (e.g. transcript profiling and imaging mass
spectrometry). Dr. Lin will also continue to lead an HTAN TNP designed to compare spatial
profiling methods across technologies and performance sites. This research has already led to
unexpected insights into adequately powering spatial profiles as well as the relative merits of
whole-slide 2D and 3D imaging. Third, he will continue to develop and validate new approaches
to tissue imaging, particularly those that are applicable to digital pathology workflows in the
setting of clinical trials and patient diagnosis. This builds on the proven ability of CyCIF to collect
high quality data from the formaldehyde-fixed paraffin embedded (FFPE) specimens routinely
acquired for patient diagnosis and staging (including core biopsies and fine needle aspirates).
This combination of collaborative and original research and technology development is
expected to have a high impact on an emerging area of translational cancer biology and is fully
consistent with the roles expected of a laboratory-based R50 Research Specialist.
摘要提取
该提案的总体目标是使用高度多路复用的高分辨率成像
组织和肿瘤以深层表征潜水员实体瘤的微环境
由NCI资助的Systems药理学实验室的NCI资助的合作者研究
(LSP),Dana Farber/Harvard Cancer Center和其他四个NCI癌症中心。这个的pi
提案,研究专家杰里·林(Jerry Lin PhD),发明了基于组织的循环免疫荧光
(Cycif)在2018年,使其成为执行的领先公共领域(无许可)方法
高质组织分析。他已将方法调整为高分辨率3D成像的选定成像
视野(使用反卷积显微镜的〜103个细胞)以及整体的快速分析
较低分辨率的幻灯片(〜106个细胞)。随着开发的Cycif可以从20-60蛋白收集数据
来自单个标本的标记,使得可以在
保存的组织环境。它还可以成像与免疫突触一样小的结构
允许在功能水平上分析细胞 - 细胞相互作用。林博士的工作直接支持
18个NCI资助的实验室的研究和他发表的Cycif协议的研究由
独立于HMS团队工作的其他多个实验室。林博士还表演自己的
研究是人类肿瘤Atlas网络跨网络项目的一部分,该项目构思和
现在领先。这些活动在过去的三个中导致了20个合作出版物
多年包括在高影响期刊上与林博士担任第一任作者或联合首先作者的几年。
作为R50提案的一部分,林博士将进行三个主要活动。首先,他会的
继续与研究小组合作以在不同阶段获取Cycif数据
并在治疗后。这将使识别分子和形态学特征成为可能
与疾病倡议,进展和治疗反应有关。其次,他会的
继续改善CYCIF方法并将其与其他空间方法集成
人类和鼠肿瘤的询问(例如,成绩单分析和成像质量
光谱法)。林博士还将继续领导HTAN TNP,以比较空间
跨技术和性能站点的分析方法。这项研究已经导致
意想不到的见解可以充分为空间概况提供动力以及相对优点
全滑动2D和3D成像。第三,他将继续开发并验证新方法
进行组织成像,尤其是适用于数字病理学工作流程的成像
临床试验和患者诊断的设置。这建立在赛季库的可靠能力基础上
甲醛固定石蜡(FFPE)的高质量数据常规标本
获得用于患者诊断和分期的(包括核心活检和细针抽吸物)。
协作和原始研究与技术发展的这种结合是
预计将对转化癌生物学的新兴领域产生很大影响,并且完全是
与基于实验室的R50研究专家所期望的角色一致。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia-Ren Lin其他文献
Jia-Ren Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia-Ren Lin', 18)}}的其他基金
Advancing technologies for the collection and analysis of high dimensional immunoprofiles and tumor images
先进的高维免疫图谱和肿瘤图像收集和分析技术
- 批准号:
10517572 - 财政年份:2022
- 资助金额:
$ 17.47万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Advancing technologies for the collection and analysis of high dimensional immunoprofiles and tumor images
先进的高维免疫图谱和肿瘤图像收集和分析技术
- 批准号:
10517572 - 财政年份:2022
- 资助金额:
$ 17.47万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 17.47万 - 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
- 批准号:
10285226 - 财政年份:2021
- 资助金额:
$ 17.47万 - 项目类别:
Omic and Multidimensional Spatial Atlas of Metastatic Breast and Prostate Cancers
转移性乳腺癌和前列腺癌的组学和多维空间图谱
- 批准号:
9788351 - 财政年份:2018
- 资助金额:
$ 17.47万 - 项目类别:
Omic and Multidimensional Spatial Atlas of Metastatic Breast and Prostate Cancers
转移性乳腺癌和前列腺癌的组学和多维空间图谱
- 批准号:
10471932 - 财政年份:2018
- 资助金额:
$ 17.47万 - 项目类别: