Optimizing Revascularization by EC Transplantation
通过 EC 移植优化血运重建
基本信息
- 批准号:7633385
- 负责人:
- 金额:$ 39.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAnastomosis - actionAnimal ModelAnimalsArchitectureBedsBiocompatible MaterialsBiopolymersBlood VesselsBlood flowCell SurvivalCell TransplantationCellsChemistryClinicClinicalClinical TrialsCollagenCollagen Type IDataDevelopmentDissectionEndothelial CellsEngineeringEpithelialFiberFibronectinsGelGene ProteinsGenesGenetic EngineeringHindlimbHumanImmunodeficient MouseImplantIschemiaLaboratoriesLeadLigandsLimb structureMechanicsMicrocirculatory BedMicrospheresModelingModificationMolecularMorbidity - disease rateMusNerve Growth FactorsOrganOrgan Culture TechniquesOutcomePathway interactionsPerfusionPhosphotransferasesPlasmaPolymersPre-Clinical ModelProductionPropertyProtein Tyrosine KinaseProteinsRattusReceptors, Tumor Necrosis Factor, Type IIRecoveryReperfusion TherapyResearch PersonnelRetroviral VectorRoleSignal TransductionSiteSmooth Muscle MyocytesSourceSpeedStenosisStructureSurfaceSystemTNFRSF1B geneTailTechniquesTestingTherapeuticTimeTissue EngineeringTissuesTranslationsTransplantationTransplantation ConditioningTumor Necrosis Factor-alphaTumor Necrosis FactorsUmbilical veinVariantWorkWound Healingadhesive polymerangiogenesisbasebiodegradable polymerbrain cellcell growthclinical applicationclinical practicecontrolled releasedesignexperienceflexibilitygene therapyimplantationimprovedin vivointerstitialmortalitymutantnanoscaleneovascularpreclinical studyprogenitorprogramsresponseretroviral transductionscaffold
项目摘要
DESCRIPTION (provided by applicant): Our two laboratories have significant experience with the design of biomaterials for tissue engineering and the use of genetic engineering to enhance vascular cell survival and blood vessel formation in vivo. For example, in the Saltzman laboratory, biodegradable cell-adhesive polymer microparticles have been used for assembly of brain cells into neotissues; controlled release of nerve growth factor by the microspheres enhanced brain cell survival and function after transplantation. In the Pober laboratory, conditions have been developed for isolation, culture and retroviral transduction of vascular cells and Bcl-2-transduced human umbilical vein endothelial cells (EC) suspended in gels of natural biopolymers have been shown to form a microvascular network capable of anastomosis with host vessels and to induce remodeling in the host so as to increase local tissue perfusion. The Pober laboratory has also extensively characterized the responses of ECs to tumor necrosis factor (TNF), most recently showing that in human organ culture, TNF can act through a pathway involving TNF receptor 2 (TNF-R2) and the downstream kinase endothelial/epithelial tyrosine kinase (Etk) to stimulate cell growth and tissue repair. Here, these techniques will be combined and optimized to produce engineered systems that are capable of rapid, robust, and reliable revascularization of ischemic tissue. These systems will be tested in animal models that permit dissection of the cellular and molecular features that lead to revascularization of limbs after ischemia. Our working hypothesis is that optimization of cell/polymer transplantable systems with respect to composition of the polymer scaffold, addition of controlled-release functions, and appropriate selection of cells will lead to improved therapeutic recoveries in blood flow and clinical outcomes in ischemic models. To test this hypothesis, we propose to: 1. compare the effect of introduction into human EC of wild type and mutant forms of Bcl-2, TNF-R2 and Etk on revascularization within scaffolds; 2. optimize the conditions for transplantation of transduced EC by incorporation of wild type or modified vascular smooth muscle cells (VSMC) or by modifications in the composition of the natural protein polymers or of the scaffold composition; and 3. introduce controlled release of agents into the scaffold design such as a TNF mutein that signals via TNF-R2 but not TNF-R1. Since these experimental systems are flexible with respect to transduced genes, protein release, polymer surface modification, and cell source, they are ideal constructs for testing additional lypotheses once proof of concept is established. Our approaches rely on materials that are already acceptable to the FDA in clinical settings; therefore, our results in animal models will be ready for translation into clinical practice.
描述(由申请人提供):我们的两个实验室在组织工程生物材料的设计和使用基因工程增强体内血管细胞存活和血管形成方面具有丰富的经验。例如,在Saltzman实验室,可生物降解的细胞粘附聚合物微粒已被用于将脑细胞组装成新组织;微球控制神经生长因子的释放增强了移植后脑细胞的存活和功能。在Pober实验室中,已经开发了用于血管细胞的分离、培养和逆转录病毒转导的条件,并且已经显示悬浮在天然生物聚合物凝胶中的Bcl-2转导的人脐静脉内皮细胞(EC)形成能够与宿主血管吻合的微血管网络,并诱导宿主中的重塑,从而增加局部组织灌注。Pober实验室还广泛表征了EC对肿瘤坏死因子(TNF)的反应,最近显示在人体器官培养中,TNF可以通过涉及TNF受体2(TNF-R2)和下游激酶内皮/上皮酪氨酸激酶(Etk)的途径发挥作用,以刺激细胞生长和组织修复。在这里,这些技术将被组合和优化,以产生能够快速,稳健和可靠的缺血组织血运重建的工程系统。这些系统将在动物模型中进行测试,这些模型允许解剖导致缺血后肢体血管重建的细胞和分子特征。我们的工作假设是,优化细胞/聚合物可移植系统的组成的聚合物支架,除了控制释放功能,并适当选择细胞将导致改善治疗恢复血流和缺血模型的临床结果。为了验证这一假设,我们建议:1。比较向人EC中引入野生型和突变形式的Bcl-2、TNF-R2和Etk对支架内血管再生的影响; 2.通过掺入野生型或修饰的血管平滑肌细胞(VSMC)或通过修饰天然蛋白质聚合物或支架组合物的组成来优化用于移植转导的EC的条件;以及3.在支架设计中引入受控释放的试剂,例如通过TNF-R2而不是TNF-R1发出信号的TNF突变蛋白。由于这些实验系统在转导基因、蛋白质释放、聚合物表面修饰和细胞来源方面是灵活的,一旦建立了概念证明,它们是用于测试额外的lypotheses的理想构建体。我们的方法依赖于FDA在临床环境中已经接受的材料;因此,我们在动物模型中的结果将准备好转化为临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W. Mark Saltzman其他文献
Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation
用于 F508del CFTR 突变位点特异性基因组编辑的下一代三链形成肽核酸
- DOI:
10.1016/j.jcf.2024.07.009 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Anisha Gupta;Christina Barone;Elias Quijano;Alexandra S. Piotrowski-Daspit;J. Dinithi Perera;Adele Riccardi;Haya Jamali;Audrey Turchick;Weixi Zao;W. Mark Saltzman;Peter M. Glazer;Marie E. Egan - 通讯作者:
Marie E. Egan
Enhanced Intratumoral Delivery of Immunomodulator Monophosphoryl Lipid A through Hyperbranched Polyglycerol–Coated Biodegradable Nanoparticles
通过超支化聚甘油涂层的可生物降解纳米颗粒增强免疫调节剂单磷酰脂质 A 在肿瘤内的递送
- DOI:
10.1016/j.jid.2024.07.019 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Jungsoo Chang;Kwangsoo Shin;Julia M. Lewis;Hee Won Suh;Joohyung Lee;William Damsky;Suzanne Xu;Marcus Bosenberg;W. Mark Saltzman;Michael Girardi - 通讯作者:
Michael Girardi
436 EFFECT OF SURVIVIN SIRNA AND VEGF SIRNA COMPLEXED IN NANOPARTICLES ON BLADDER CANCER CELLS AND UROTHELIAL TISSUES
- DOI:
10.1016/j.juro.2010.02.507 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Alexander Saltzman;Kim Woodrow;Marcia A. Wheeler;Avanti Verma;W. Mark Saltzman;Robert M. Weiss - 通讯作者:
Robert M. Weiss
1358 NANOPARTICLE DELIVERY OF THE HISTONE DEACETYLASE INHIBITOR PXD101 FACILITATES BLADDER CANCER CELL UPTAKE AND CYTOTOXICITY
- DOI:
10.1016/j.juro.2011.02.1180 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Hristos Z. Kaimakliotis;Darryl T. Martin;Christopher J. Hoimes;Christopher C. Cheng;Jingchun Liu;Wm. Kevin Kelly;Gregory N. Tew;W. Mark Saltzman;Robert M. Weiss - 通讯作者:
Robert M. Weiss
Cell-binding Peptides Conjugated to Poly(ethylene glycol) Promote Neural Cell Aggregation
与聚乙二醇结合的细胞结合肽促进神经细胞聚集
- DOI:
10.1038/nbt0894-797 - 发表时间:
1994-08-01 - 期刊:
- 影响因子:41.700
- 作者:
Weiguo Dai;Jennifer Belt;W. Mark Saltzman - 通讯作者:
W. Mark Saltzman
W. Mark Saltzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W. Mark Saltzman', 18)}}的其他基金
Engineering of Polymeric Particles for Fetal Therapy
用于胎儿治疗的聚合物颗粒工程
- 批准号:
10586282 - 财政年份:2023
- 资助金额:
$ 39.11万 - 项目类别:
Yale Interdisciplinary Bioengineering Training Grant for Diabetes Research
耶鲁大学糖尿病研究跨学科生物工程培训补助金
- 批准号:
8730154 - 财政年份:2013
- 资助金额:
$ 39.11万 - 项目类别:
Yale Interdisciplinary Bioengineering Training Grant for Diabetes Research
耶鲁大学糖尿病研究跨学科生物工程培训补助金
- 批准号:
8928174 - 财政年份:2013
- 资助金额:
$ 39.11万 - 项目类别:
Yale Interdisciplinary Bioengineering Training Grant for Diabetes Research
耶鲁大学糖尿病研究跨学科生物工程培训补助金
- 批准号:
8633896 - 财政年份:2013
- 资助金额:
$ 39.11万 - 项目类别:
CED of Nanoparticles Loading with Novel Agents for Improved Treatment of Gliomas
载有新型药物的纳米颗粒的 CED 可改善神经胶质瘤的治疗
- 批准号:
8232044 - 财政年份:2011
- 资助金额:
$ 39.11万 - 项目类别:
CED of Nanoparticles Loading with Novel Agents for Improved Treatment of Gliomas
载有新型药物的纳米颗粒的 CED 可改善神经胶质瘤的治疗
- 批准号:
8107039 - 财政年份:2011
- 资助金额:
$ 39.11万 - 项目类别:
CED of Nanoparticles Loading with Novel Agents for Improved Treatment of Gliomas
载有新型药物的纳米颗粒的 CED 可改善神经胶质瘤的治疗
- 批准号:
8620614 - 财政年份:2011
- 资助金额:
$ 39.11万 - 项目类别:
CED of Nanoparticles Loading with Novel Agents for Improved Treatment of Gliomas
载有新型药物的纳米颗粒的 CED 可改善神经胶质瘤的治疗
- 批准号:
8444707 - 财政年份:2011
- 资助金额:
$ 39.11万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 39.11万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 39.11万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 39.11万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 39.11万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 39.11万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 39.11万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 39.11万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 39.11万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 39.11万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 39.11万 - 项目类别:














{{item.name}}会员




