Automated Mobile Microscopy for Malaria Diagnosis and surveillance in Uganda
在乌干达使用自动移动显微镜进行疟疾诊断和监测
基本信息
- 批准号:10713248
- 负责人:
- 金额:$ 26.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAddressAfricaArtificial IntelligenceAutomationCalibrationCellular PhoneCessation of lifeCommunicable DiseasesComplementComputer softwareCountryCouplingData ScienceData SourcesDeveloping CountriesDevelopmentDiagnosisDiagnosticDiseaseDisease SurveillanceDrug resistanceEnvironmentEquipmentGoalsHealthImageImage AnalysisIndividualLocationMachine LearningMalariaMalaria DiagnosisMapsMethodsMicroscopeMicroscopyModelingOutcomePathogen detectionPerformancePilot ProjectsPreventionProbabilityPublic HealthReportingResearchResolutionResourcesRiskStainsStandardizationSystemTechniquesTechnologyTelephoneTestingTimeTrainingUgandaUniversitiesUpdateWorkcostdeep learningdeep learning modeldesigndiagnostic platformdisease diagnosisdisorder riskexperiencefield studyimplementation interventionimprovedinnovationmachine learning methodmeternovelpathogenpoint of carepublic health interventionreal time modelscreeningtooltrend
项目摘要
Project Summary
Malaria is one of the leading health problems of the developing world. Malaria endemicity has
been attributed to poor diagnosis at the lab level. This quite often leads to disease misdiagnosis
and drug resistance. Many developing countries are faced with a lack of critical mass of lab
technicians to diagnose the disease through a gold standard mechanism of microscopy and this
has worsened the already dire situation in some of these Countries. World over the trending
technologies are now based on machine learning and deep learning techniques. These can be
leveraged with the combination of smartphones to improve disease diagnosis. However, most of
the previous work on automation for microscopy diagnosis has been carried out adhocly in the
lab environment and no study seems to give a practical field deployable solution. The goal of the
proposed research is to develop a rapid, low cost, accurate and simple in-field screening system
for microscopy challenges like malaria. Specifically, this study will test and validate developed
image analysis models for real time field-based diagnostics and surveillance of malaria. The
proposed solution builds from our earlier work on mobile microscopy carried out at Makerere
University AI Lab, that has confronted automated microscopy through exploiting recent
technological advances in 3D printing to enable development of a low-cost 3D printed adapter.
This has enabled attachment of a wide range of Smartphones on a microscope, furthermore, we
have implemented deep learning models for pathogen detection to produce effective hardware
and software respectively.
The software component of our work is to train machine learning methods to recognise different
pathogen objects. The diagnosis solutions have however been ad-hoc in its current state where
different conditional settings like image scaling, phone resolutions and grid readings were not
standardized and therefore poor performance of the model when deployed in field testing. Our
Infield automated screening trials will therefore involve achieving robust outcomes, through 1)
Development of machine learning approaches for standardised field-based microscopy of
malaria diagnosis in Uganda. 2) Building a complementary framework for real time
surveillance and improved diagnosis of malaria platform through in-field diagnostic
studies. The point-of-care field-based diagnostic system proposed here addresses a major
unmet public health malaria screening and surveillance need to reliably inform public health
interventions in malaria control and prevention.
项目摘要
疟疾是发展中国家的主要健康问题之一。疟疾的流行
都是因为实验室诊断不准确这往往导致疾病误诊
和耐药性。许多发展中国家面临着缺乏足够数量的实验室
技术人员通过显微镜的金标准机制诊断疾病,
使其中一些国家本已严峻的局势更加恶化。世界上的趋势
技术现在基于机器学习和深度学习技术。这些可以
结合智能手机来提高疾病诊断。但大部分
显微镜诊断自动化的前期工作已在
实验室环境和没有研究似乎给出了一个实际的现场部署的解决方案。的目标
提出的研究是开发一种快速、低成本、准确和简单的现场筛选系统
for microscopic显微镜challenges挑战like malaria疟疾.具体而言,本研究将测试和验证开发的
用于疟疾真实的实时现场诊断和监测的图像分析模型。的
建议的解决方案是基于我们在Makerere进行的移动的显微镜的早期工作
大学人工智能实验室,通过利用最近的
3D打印的技术进步,以实现低成本3D打印适配器的开发。
这使得能够在显微镜上安装各种智能手机,此外,我们
已实施用于病原体检测的深度学习模型以生产有效的硬件
软件分别。
我们工作的软件部分是训练机器学习方法来识别不同的
病原体然而,诊断解决方案在其当前状态下是特别的,
不同的条件设置,如图像缩放,手机分辨率和网格读数,
标准化,因此在现场测试中部署时模型的性能较差。我们
因此,现场自动筛选试验将通过以下方式实现稳健的结局:1)
标准化基于场的显微镜的机器学习方法的开发
乌干达的疟疾诊断2)构建真实的补充框架
通过实地诊断监测和改进疟疾诊断平台
问题研究这里提出的基于现场的即时诊断系统解决了一个主要问题,
未得到满足的公共卫生疟疾筛查和监测需要可靠地告知公共卫生
疟疾控制和预防的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rose Nakasi其他文献
Rose Nakasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
- 批准号:
10403224 - 财政年份:2022
- 资助金额:
$ 26.22万 - 项目类别:
Using the EPIC model to build transdisciplinary communities of practice that effectively address urban resilience in Africa and Asia
使用 EPIC 模型建立跨学科实践社区,有效解决非洲和亚洲的城市复原力问题
- 批准号:
2103692 - 财政年份:2022
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
- 批准号:
10689689 - 财政年份:2022
- 资助金额:
$ 26.22万 - 项目类别:
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 26.22万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 26.22万 - 项目类别:
Research Grant
An implementation science approach to address multi-level barriers to cancer screening among women living with HIV in South Africa
一种实施科学方法,以解决南非艾滋病毒感染妇女癌症筛查的多层次障碍
- 批准号:
10242935 - 财政年份:2020
- 资助金额:
$ 26.22万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10267216 - 财政年份:2020
- 资助金额:
$ 26.22万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10085144 - 财政年份:2020
- 资助金额:
$ 26.22万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10438844 - 财政年份:2020
- 资助金额:
$ 26.22万 - 项目类别:
Teaching empowerment: Grass-roots educators' strategies to address gender equity in the context of the HIV epidemic in South Africa
教学赋权:基层教育工作者在南非艾滋病毒流行背景下解决性别平等问题的战略
- 批准号:
218055 - 财政年份:2010
- 资助金额:
$ 26.22万 - 项目类别:
Studentship Programs














{{item.name}}会员




