Roles of TREM2 and TYROBP in AD-related Network Hyperexcitability
TREM2 和 TYROBP 在 AD 相关网络过度兴奋中的作用
基本信息
- 批准号:10718004
- 负责人:
- 金额:$ 283.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAdaptor Signaling ProteinAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskBicucullineBindingBinding ProteinsBiological Response ModifiersBrainCell Culture TechniquesCellsChemicalsDementiaDevelopmentDiseaseEpilepsyExcitatory NeurotoxinsGeneticHumanImmuneImmune System DiseasesImpaired cognitionImpairmentIn VitroKnock-inKnock-in MouseLinkMacrophageMediatingMicrogliaModelingMouse StrainsMusNeurofibrillary TanglesNeuronsPathogenesisPathologicPathologyPharmaceutical PreparationsPredispositionProcessProtein Tyrosine KinaseReportingRiskRoleRunawaySeizuresSenile PlaquesSignal TransductionSliceSynapsesTREM2 geneTYRO Protein Tyrosine Kinase Binding ProteinTestingTherapeuticVariantage relatedamyloid pathologybrain cellchemical reductionclinically significantepileptiformexcitotoxicityexperimental studygene productgenetic variantin vivokainatemouse modelnetwork dysfunctionneural networknoveloverexpressionprotein functionrisk variant
项目摘要
SUMMARY
Recent evidence suggests that immune and neural network dysfunctions form a vicious cycle that drives the
pathogenesis of Alzheimer’s disease (AD). The triggering receptor expressed on myeloid cells 2 (TREM2) and
its binding partner, the TYRO protein tyrosine kinase-binding protein (TYROBP), are both expressed by
microglia, the resident immune cells of the brain. Genetic variants that impair the functions of TREM2 or TYROBP
increase the risk of developing AD or other types of dementias. Several studies have demonstrated that such
variants also affect the development of AD pathologies such as amyloid plaques and neurofibrillary tangles, but
some of the results revealed perplexing discrepancies between effects on pathological versus functional
alterations. For this and other reasons, it is important to investigate additional mechanisms, especially processes
that have the potential to contribute to AD-related cognitive decline. Last year, we reported that reducing the
function of TREM2 exacerbates chemically induced epilepsy in mice. Since then, we discovered similar
abnormalities in mice with reduced expression of TYROBP. In addition, we found that knockin mice expressing
the AD risk variant of human TREM2 R47H also have increased network hyperexcitability when challenged with
an epilepsy-causing drug or when crossed onto an App knockin mouse strain that develops prominent amyloid
pathology. These findings raise the possibility that microglia require TREM2 and TYROBP to suppress network
hyperexcitability. The potential clinical significance of this hypothesis is highlighted by studies demonstrating
nonconvulsive epileptiform activity in a substantial proportion of AD patients and a faster cognitive decline in
sporadic AD patients with detectable epileptiform activity as compared to those without. While most studies of
TREM2 and TYROBP have focused on genetic links to dementias or the effects of these gene products on
related pathologies, our proposal will test the novel hypothesis that microglia need to express normal levels of
TREM2 and TYROBP to effectively sense and suppress network hyperexcitability, which may contribute to
cognitive decline in AD and related dementias. To test this overall hypothesis, we will determine whether (1)
hypofunction of TYROBP exacerbates network hyperexcitability in excitotoxicity- and AD-related mouse
models, (2) overexpression of TREM2 reduces chemically induced network hyperexcitability and whether
TYROBP is required for this effect, and (3) how hypofunction of TREM2 or TYROBP impairs the ability of
microglia to suppress aberrant neuronal activities in cell culture models. The results of the proposed experiments
will shed light on the roles of these molecules and of microglia in the pathogenesis of AD. They could also provide
useful guidance in the development of immune modulatory treatment for AD and related disorders.
概括
最近的证据表明,免疫和神经网络功能障碍形成了一种恶性循环,可驱动
阿尔茨海默氏病的发病机理(AD)。在髓样细胞2(Trem2)和
它的结合伴侣,Tyro蛋白酪氨酸激酶结合蛋白(Tyrobp)均由
小胶质细胞,大脑的居民免疫细胞。损害TREM2或Tyrobp功能的遗传变异
增加发展AD或其他类型的痴呆症的风险。几项研究表明,这样
变体还会影响AD病理的发展,例如淀粉样蛋白斑块和神经原纤维缠结,但
一些结果表明对病理与功能的影响之间存在困惑的差异
改变。由于这个和其他原因,重要的是研究其他机制,尤其是过程
有可能导致与广告相关的认知下降。去年,我们报道了减少
Trem2的功能加剧了小鼠化学诱导的癫痫。从那以后,我们发现了类似的
暴君表达降低的小鼠异常。此外,我们发现表达的敲蛋白小鼠
当受到挑战时
引起癫痫的药物或越过会发展出突出淀粉样蛋白的应用敲击小鼠菌株
病理。这些发现增加了小胶质细胞需要Trem2和Tyrobp抑制网络的可能性
过度兴奋。该假设的潜在临床意义通过证明
在很大一部分的AD患者中,非敏感的癫痫样活动,认知能力下降的速度更快
与没有可检测到的癫痫病活性的零星AD患者相比。而大多数研究
TREM2和Tyrobp专注于与痴呆症的遗传联系或这些基因产物的影响
相关病理,我们的建议将检验小胶质细胞需要表达正常水平的新假设
TREM2和Tyrobp有效地感知和抑制网络过度兴奋性,这可能有助于
AD和相关痴呆症的认知能力下降。为了检验这一总体假设,我们将确定(1)是否
霸凌和兴奋性和广告相关的小鼠的网络过度刺激性的性能不佳
模型,(2)TREM2的过表达可降低化学诱导的网络过度兴奋性以及是否是否
这种效果需要泰洛布,(3)TREM2或Tyrobp的功能障碍如何损害
小胶质细胞抑制细胞培养模型中异常神经元活性。提出的实验的结果
将阐明这些分子和小胶质细胞在AD发病机理中的作用。他们也可以提供
在开发AD和相关疾病的免疫调节治疗方面的有用指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lennart Mucke其他文献
Lennart Mucke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lennart Mucke', 18)}}的其他基金
Transcriptomic and Proteomic Analysis of Tau-dependent E/I Imbalance
Tau 依赖性 E/I 失衡的转录组学和蛋白质组学分析
- 批准号:
10789541 - 财政年份:2023
- 资助金额:
$ 283.31万 - 项目类别:
Project 3: Roles of Tau Levels, Sequence and Interactors in Neural Network Dysfunction of Alzheimer's Disease
项目 3:Tau 水平、序列和相互作用因子在阿尔茨海默病神经网络功能障碍中的作用
- 批准号:
10670346 - 财政年份:2021
- 资助金额:
$ 283.31万 - 项目类别:
Project 3: Roles of Tau Levels, Sequence and Interactors in Neural Network Dysfunction of Alzheimer's Disease
项目 3:Tau 水平、序列和相互作用因子在阿尔茨海默病神经网络功能障碍中的作用
- 批准号:
10461845 - 财政年份:2021
- 资助金额:
$ 283.31万 - 项目类别:
Project 3: Roles of Tau Levels, Sequence and Interactors in Neural Network Dysfunction of Alzheimer's Disease
项目 3:Tau 水平、序列和相互作用因子在阿尔茨海默病神经网络功能障碍中的作用
- 批准号:
10271128 - 财政年份:2021
- 资助金额:
$ 283.31万 - 项目类别:
Evolving CRISPR-based platforms for the discovery of Alzheimer relevant neurodegenerative pathways
不断发展的基于 CRISPR 的平台用于发现阿尔茨海默病相关的神经退行性通路
- 批准号:
10056618 - 财政年份:2020
- 资助金额:
$ 283.31万 - 项目类别:
Neural network and immune cell dysfunctions in Alzheimer's disease pathogenesis
阿尔茨海默病发病机制中的神经网络和免疫细胞功能障碍
- 批准号:
9766119 - 财政年份:2019
- 资助金额:
$ 283.31万 - 项目类别:
Neural network and immune cell dysfunctions in Alzheimer's disease pathogenesis
阿尔茨海默病发病机制中的神经网络和免疫细胞功能障碍
- 批准号:
10077445 - 财政年份:2019
- 资助金额:
$ 283.31万 - 项目类别:
相似海外基金
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 283.31万 - 项目类别:
Regulation of the nucleolar RNA exosome in cancer
核仁 RNA 外泌体在癌症中的调控
- 批准号:
10589142 - 财政年份:2022
- 资助金额:
$ 283.31万 - 项目类别:
Signaling networks and transcriptional programs in lens vesicle formation
晶状体囊泡形成中的信号网络和转录程序
- 批准号:
10621311 - 财政年份:2022
- 资助金额:
$ 283.31万 - 项目类别:
Signaling networks and transcriptional programs in lens vesicle formation
晶状体囊泡形成中的信号网络和转录程序
- 批准号:
10449631 - 财政年份:2022
- 资助金额:
$ 283.31万 - 项目类别: