Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
基本信息
- 批准号:10729420
- 负责人:
- 金额:$ 208.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdmixtureAffectAgeAnatomyArizonaAtlas of Cancer Mortality in the United StatesBioinformaticsBiologicalBiologyBiopsyBrainBrain NeoplasmsCell NucleusCellsClassificationClinicClinicalClinical OncologyClinical TrialsCollaborationsCommunitiesComplexComputer ModelsDendritic Cell VaccineDetectionDiagnosticDiseaseDisease ProgressionEcosystemEvolutionFosteringFutureGeneticGlioblastomaGliomaHeterogeneityImageImage Guided BiopsyImmunotherapyIncidenceInflammationInter-tumoral heterogeneityMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMapsMathematicsMedicalMethodsModelingMolecular AnalysisMolecular BiologyMonitorOncologyOperative Surgical ProceduresOrganPatient CarePatient-Focused OutcomesPatientsPatternPersonsPhenotypePhysiciansPhysicsPopulationResearchResourcesScientistSeriesSex BiasSignal TransductionSystemSystems AnalysisSystems BiologyT-LymphocyteTherapeuticTissue SampleTissuesTrainingUniversitiesVaccine TherapyVisionbiological heterogeneitybrain parenchymaclinical imagingclinical translationcohortdensitydiversity and inclusiondriving forceimage archival systemimaging facilitiesimaging modalityimprovedin vivoin vivo imagingindividual patientinsightlensmathematical modelmenneoplasticnoveloutreachprecision medicineprecision oncologypredictive modelingradiological imagingrecruitresponsesexsoft tissuestandard of caretranscriptome sequencingtreatment responsetumortumor growthtumor microenvironmenttumor progression
项目摘要
SUMMARY: OVERALL: MATHEMATICAL ONCOLOGY SYSTEMS ANALYSIS IMAGING CENTER
Glioblastoma (GBM), the most aggressive primary brain cancer, is amongst the most heterogeneous of cancers,
both intra- and inter-tumorally. GBMs are an admixture of neoplastic glioma cells and non-neoplastic / reactive
brain parenchyma that contribute to the overall imageable tumor mass. As such, cellular content, including both
cellular density and cellular composition, is critically important for understanding the status and evolution of a
given tumor. Although MRI provides excellent soft tissue contrast and can noninvasively characterize anatomy,
no methods exist to integrate a spatial and temporal understanding of the cellular components of the tumor
inferred from imaging in vivo.
It has become increasingly clear that precision oncology strategies rely on a quantitative and predictive
understanding of the state of the cancer complex system evolving within each patient. Recent findings from our
group have revealed two key opportunities we seek to leverage in our proposed Mathematical Oncology Systems
Analysis Imaging Center (MOSAIC). First, molecular analysis of a cohort of our image-localized biopsies of GBM
have inspired the concept of Glioma Tissue States as a composite classification of tissue samples. Our findings
from single nucleus RNAseq reveal that specific subpopulations and cellular phenotypes of neoplastic and non-
neoplastic cells show distinct patterns of co-habitation constraining potential cross-talk signaling. Second, we
have found mathematical modeling and machine learning analyses of clinical MRI features of GBM biopsies are
able to predict loco-regional features of GBM biology in vivo. These image-based models provide the promise to
track aspects of intra- and inter-tumoral heterogeneity previously unattainable during patient care.
Our overall center vision is to build a conceptual framework to understand tissue state-associated cellular
composition transitions that happen in glioma and the ways to interpret MRI relative to those changes for these
key cellular phenotypes. Specifically, in Project 1 we will explore strategies to target unfavorable (unresponsive)
tissue states to navigate transitions of the cancer complex system towards more favorable (responsive) tissue
states. In Project 2 we will leverage mathematical modeling and machine learning approaches to fuse MRI and
image-localized biopsy quantified tissue states to enable tracking tissue state changes in patient receiving
standard of care and immunotherapy strategies. Thus, our MOSAIC perfectly aligns with the CSBC initiative,
integrating experimental biology with computational modeling, using methods from imaging physics,
mathematical tumor growth modeling, image-guided biopsies, molecular biology, machine learning, and
integrative bioinformatics to develop validated advances in cancer systems biology.
总结:总体:数学肿瘤学系统分析成像中心
胶质母细胞瘤(GBM)是最具侵袭性的原发性脑癌,是最异质性的癌症之一,
包括肿瘤内和肿瘤间。GBM是肿瘤性胶质瘤细胞和非肿瘤性/反应性胶质瘤细胞的混合物。
脑实质,有助于整个可成像的肿瘤质量。因此,蜂窝内容,包括
细胞密度和细胞组成,对于了解一个
考虑到肿瘤。虽然MRI提供了良好的软组织对比度,可以无创地表征解剖结构,
不存在将对肿瘤的细胞成分的空间和时间理解整合的方法
从体内成像推断。
越来越清楚的是,精确的肿瘤学策略依赖于定量和预测性的
了解每个患者体内癌症复杂系统的状态。我们的最新发现
小组已经揭示了两个关键的机会,我们寻求利用我们提出的数学肿瘤学系统
影像分析中心(MOSAIC)。首先,对我们的GBM图像定位活检队列进行分子分析
已经启发了神经胶质瘤组织状态作为组织样本的复合分类的概念。我们的研究结果
从单核RNAseq揭示了肿瘤和非肿瘤细胞的特定亚群和细胞表型,
肿瘤细胞显示出限制潜在串扰信号传导的不同的共居模式。二是
已经发现GBM活检的临床MRI特征的数学建模和机器学习分析是
能够预测体内GBM生物学的局部区域特征。这些基于图像的模型提供了承诺,
跟踪肿瘤内和肿瘤间异质性的各个方面,这是以前在患者护理过程中无法实现的。
我们的总体中心愿景是建立一个概念框架,以了解组织状态相关的细胞
发生在胶质瘤中的成分转变以及解释MRI相对于这些变化的方法
关键的细胞表型具体来说,在项目1中,我们将探索针对不利(反应迟钝)的策略。
组织状态以导航癌症复合系统向更有利(响应性)组织的转变
states.在项目2中,我们将利用数学建模和机器学习方法来融合MRI和
图像定位活组织检查量化组织状态以使得能够跟踪患者接收中的组织状态变化
护理标准和免疫治疗策略。因此,我们的MOSAIC与CSBC倡议完全一致,
将实验生物学与计算建模相结合,使用成像物理学的方法,
数学肿瘤生长建模,图像引导活检,分子生物学,机器学习,
整合生物信息学,以开发癌症系统生物学的有效进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Canoll其他文献
Peter Canoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Canoll', 18)}}的其他基金
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10373149 - 财政年份:2022
- 资助金额:
$ 208.67万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10544524 - 财政年份:2022
- 资助金额:
$ 208.67万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10361416 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Langworthy Diversity Supplement: Image-based models of tumor-immune dynamics in glioblastoma
Langworthy Diversity Supplement:基于图像的胶质母细胞瘤肿瘤免疫动力学模型
- 批准号:
10381307 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Diversity Supplement Ifediora: Image-based models of tumor-immune dynamics in glioblastoma
多样性补充 Ifediora:胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10746512 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10737767 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10580715 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10524208 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Targeting Go and Grow in Glioblastoma
靶向胶质母细胞瘤的 Go and Grow
- 批准号:
10650328 - 财政年份:2020
- 资助金额:
$ 208.67万 - 项目类别:
Targeting Go and Grow in Glioblastoma
靶向胶质母细胞瘤的 Go and Grow
- 批准号:
10053146 - 财政年份:2020
- 资助金额:
$ 208.67万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 208.67万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 208.67万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 208.67万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 208.67万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 208.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 208.67万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 208.67万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 208.67万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 208.67万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 208.67万 - 项目类别:
Miscellaneous Programs