Diversity Supplement Ifediora: Image-based models of tumor-immune dynamics in glioblastoma
多样性补充 Ifediora:胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
基本信息
- 批准号:10746512
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmArtificial IntelligenceBiologyBiopsyBrainBrain NeoplasmsCell CommunicationCell Death InductionCellsCoculture TechniquesComputer ModelsDiseaseEarly identificationEnvironmentEvolutionGenomicsGlioblastomaGliomaImageImage Guided BiopsyImmuneImmunologicsImmunotherapeutic agentImmunotherapyIn VitroInterest GroupLinkMacrophageMagnetic Resonance ImagingMalignant NeoplasmsMapsMethodsMicrogliaModelingMyelogenousNeurogliaPatientsPharmaceutical PreparationsPharmacotherapyPhenotypeResearchSignal TransductionSystemTherapeuticTopotecanTreatment ProtocolsTumor Promotionaggressive therapyanticancer researchbiological heterogeneitycancer carecancer cellcell typechemotherapyimmunogenic cell deathimmunoreactivityindividual patientnon-invasive imagingparent grantradiomicsresponsesingle-cell RNA sequencingtumortumor heterogeneitytumor microenvironment
项目摘要
Abstract
Glioblastoma Multiforme (GBM) is the most common of all gliomas with a median survival 14-18
months, despite aggressive treatment regimens. However, glioma is a disease that
encompasses more than just cancer cells. In fact, many studies have shown that glioma can
alter the brain microenvironment in ways that promote tumor survival and propagation. Within
this brain tumor microenvironment is a diversity of cell types. One of particular group of interest
is glioma associated microglia and macrophages (GAMMs), an important component of the
immune cells in the brain. As a result, immunotherapy is emerging as a promising method to
treat cancer; however, we are not able to identify early response or predict who will respond.
While biopsies are the most reliable way to assess the immunological landscape within the
tumor, we are limited both spatially and temporally in the number of biopsies we can obtain,
particularly for brain tumor patients. The heterogeneity of the tumor-immune landscape across
patients suggests that a patient-specific approach will be required to accurately assess each
patient’s individual tumor-immune environment and the evolution thereof. As part of the Parent
Grant, we will use non-invasive imaging, image-guided biopsies, computational modeling, and
artificial intelligence to bridge spatial and temporal scales and predict the abundance of glioma
associated microglia/macrophages (GAMMs) comprising each magnetic resonance image
(MRI) at the voxel level. Linking the MRI to the biological heterogeneity using radiomics
approaches provides an opportunity to individualize our understanding of the tumor-immune
environment. Also in recent years, research has looked into how drug treatment is able to
activate GAMMs to take on immunoreactive phenotypes. For this proposed supplement we will
characterize myeloid – glioma cell interactions in response to immunogenic cell death induced
by the chemotherapy drug topotecan. This will be done using MRI localized biopsies as well as
in vitro co-culture systems, providing an additional therapeutically relevant context in which to
study cellular response and signaling. The study will make use of single cell RNA sequencing to
identify activational states of immune cells, and will provide us with another aspect of microglia
and macrophage biology that can be incorporated into the model generated in the Parent Grant.
抽象的
多形性胶质母细胞瘤 (GBM) 是所有胶质瘤中最常见的,中位生存期为 14-18
尽管采取了积极的治疗方案,但仍持续了数月。然而,神经胶质瘤是一种疾病
不仅仅包括癌细胞。事实上,许多研究表明神经胶质瘤可以
以促进肿瘤存活和增殖的方式改变大脑微环境。之内
这种脑肿瘤微环境是多种细胞类型的。特定利益群体之一
是神经胶质瘤相关的小胶质细胞和巨噬细胞(GAMM),是神经胶质瘤的重要组成部分
大脑中的免疫细胞。因此,免疫疗法正在成为一种有前途的方法
治疗癌症;然而,我们无法识别早期反应或预测谁会做出反应。
虽然活检是评估免疫学状况的最可靠方法
肿瘤,我们可以获得的活检数量在空间和时间上都受到限制,
特别是对于脑肿瘤患者。肿瘤免疫景观的异质性
患者建议需要采取针对患者的方法来准确评估每个患者的情况
患者的个体肿瘤免疫环境及其演变。作为家长的一部分
格兰特,我们将使用非侵入性成像、图像引导活检、计算模型和
人工智能连接时空尺度并预测神经胶质瘤的丰度
包含每个磁共振图像的相关小胶质细胞/巨噬细胞 (GAMM)
(MRI)体素水平。使用放射组学将 MRI 与生物异质性联系起来
方法提供了一个机会来个性化我们对肿瘤免疫的理解
环境。近年来,研究还探讨了药物治疗如何能够
激活 GAMM 呈现免疫反应表型。对于这个拟议的补充,我们将
表征骨髓-神经胶质瘤细胞响应诱导的免疫原性细胞死亡的相互作用
通过化疗药物拓扑替康。这将通过 MRI 局部活检以及
体外共培养系统,提供了额外的治疗相关背景
研究细胞反应和信号传导。该研究将利用单细胞 RNA 测序来
识别免疫细胞的激活状态,将为我们提供小胶质细胞的另一个方面
和巨噬细胞生物学,可以纳入父母资助中生成的模型中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Canoll其他文献
Peter Canoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Canoll', 18)}}的其他基金
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10544524 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10373149 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10361416 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Langworthy Diversity Supplement: Image-based models of tumor-immune dynamics in glioblastoma
Langworthy Diversity Supplement:基于图像的胶质母细胞瘤肿瘤免疫动力学模型
- 批准号:
10381307 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10737767 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10580715 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10524208 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Fellowship














{{item.name}}会员




