Langworthy Diversity Supplement: Image-based models of tumor-immune dynamics in glioblastoma
Langworthy Diversity Supplement:基于图像的胶质母细胞瘤肿瘤免疫动力学模型
基本信息
- 批准号:10381307
- 负责人:
- 金额:$ 4.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmArtificial IntelligenceBiopsyBrain NeoplasmsComputer ModelsEnvironmentEvolutionGenomicsGlioblastomaGliomaImageImage Guided BiopsyImmuneImmunologicsImmunotherapeutic agentImmunotherapyLinkMagnetic Resonance ImagingMalignant NeoplasmsMapsMethodsMicrogliaModelingPatientsPhenotypePopulationTreatment ProtocolsUncertaintyaggressive therapyanticancer researchbasebiological heterogeneitycancer careindividual patientmacrophageneuro-oncologynon-invasive imagingparent grantradiomicsresponsetumortumor heterogeneity
项目摘要
ABSTRACT
Glioblastoma Multiforme (GBM) is the most common of all gliomas with a median survival 14-18 months, despite
aggressive treatment regimens. Immunotherapy is emerging as a promising method to treat cancer; however,
we are not able to identify early response or predict who will respond. These uncertainties pose serious
challenges to being able to effectively apply immunotherapeutic approaches. While biopsies are the most reliable
way to assess the immunological landscape within the tumor, we are limited both spatially and temporally in the
number of biopsies we can obtain, particularly for brain tumor patients. The heterogeneity of the tumor-immune
landscape across patients suggests that a patient-specific approach will be required to accurately assess each
patient’s individual tumor-immune environment and the evolution thereof. As part of the Parent Grant, we will
use non-invasive imaging, image-guided biopsies, computational modeling, and artificial intelligence to bridge
spatial and temporal scales and predict the abundance of glioma associated microglia/macrophages (GAMMs)
comprising each magnetic resonance image (MRI) at the voxel level. Linking the MRI to the biological
heterogeneity using radiomics approaches provides an opportunity to individualize our understanding of the
tumor-immune environment. Specifically, for this supplement, we will use the predictive tumor-immune maps to
develop an immunotherapy response metric termed GAMMs Days Gained (GDG), which is based on the existing
Days Gained metric. GDG will be used to evaluate the GAMM population changes with therapy as depicted by
the predictive map. We expect that the GDG will aid in understanding who will respond based on early predictive
map changes. Additionally, the GDG metric will be compared to results from other immunotherapy response
metrics, including the standard immunotherapy response assessment in neuro-oncology (iRANO) criteria.
摘要
多形性胶质母细胞瘤(GBM)是所有胶质瘤中最常见的,尽管存在严重的并发症,但中位生存期为14-18个月。
积极的治疗方案。免疫疗法正在成为治疗癌症的一种有前途的方法;然而,
我们无法确定早期响应或预测谁会响应。这些不确定性造成了严重的
能够有效应用免疫方法的挑战。虽然活检是最可靠的
为了评估肿瘤内的免疫景观,我们在空间和时间上都受到限制,
我们可以获得的活组织检查的数量,特别是对于脑肿瘤患者。肿瘤免疫的异质性
患者的总体情况表明,需要采用患者特异性方法来准确评估每个
患者的个体肿瘤免疫环境及其演变。作为家长补助金的一部分,我们将
使用非侵入性成像、图像引导活检、计算建模和人工智能,
空间和时间尺度,并预测胶质瘤相关的小胶质细胞/巨噬细胞(GAMM)的丰度
包括体素级的每个磁共振图像(MRI)。将核磁共振成像与生物学
使用放射组学方法的异质性提供了一个机会,个性化我们的理解,
肿瘤免疫环境具体来说,对于这种补充,我们将使用预测性肿瘤免疫图,
开发一种称为GAMMs获得天数(GDG)的免疫治疗反应指标,该指标基于现有的
获得的天数指标。GDG将用于评价GAMM人群随治疗的变化,如
预测地图我们希望GDG将有助于了解谁将根据早期预测做出响应,
地图改变。此外,将GDG指标与其他免疫治疗应答的结果进行比较
指标,包括神经肿瘤学标准免疫治疗反应评估(iRANO)标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Canoll其他文献
Peter Canoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Canoll', 18)}}的其他基金
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10544524 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10373149 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10361416 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Diversity Supplement Ifediora: Image-based models of tumor-immune dynamics in glioblastoma
多样性补充 Ifediora:胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10746512 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10737767 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10580715 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10524208 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)