Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings

开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列

基本信息

  • 批准号:
    10730576
  • 负责人:
  • 金额:
    $ 46.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-20 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary Thanks to the affordability, ease of customization, and superior chronic recording performance, microwire- based microelectrode array (MEA) is an important tool to record high temporal resolution neural activities to understand the nervous system at a mechanistic level. But potential of such microwire MEA, especially large- scale ones made with smallest wires of current scientific needs, is limited by the labor-intensive fabrication process. If we could have the simple, mature, but tedious tasks done by an automatic machine with high accuracy, repeatability, and throughput, it will dramatically decrease the labor cost and enable precise handling of the smallest microwires to build complex custom configuration MEAs. Our longer-term goal is to fully automate the fabrication and surgical implantation processes for custom minimal-damaging neural interface implants. The near-term objective of this application is to develop a hybrid fabrication machine (less than $10k benchtop tool), with which any neuroscience lab or department with minimal engineering expertise could build custom linear MEAs for their specific electrophysiological recording needs with only raw material costs. We hypothesize that, as compared to conventional manually assembled microwire MEAs, automatically fabricated ones by violet laser-based contactless tip preparation, direct-ink-writing (DIW) based electrical connection, image-based alignment, and machine-based manipulation will have at least equivalent chronic in- vivo recording performance while costing fewer person-hours to make. This proposal develops and verifies enabling technologies and the automatic machine in three Specific Aims. Aim 1 utilizes violet laser cutting for concurrent contactless wire tip sharpening and insulation stripping. Process parameters will be optimized for both carbon fiber and metal (tungsten) microwires to create conical sharp tip profiles and desired recording site re-exposure area in one laser path. Aim 2 firstly investigates the printability and phase diagrams of conductive and sealing epoxies used in our benchtop manual fabrication protocol steps. Secondly, we will develop a multi- nozzle DIW system controlled by nozzle speed to dispense desired epoxy size/line width and a pick-and-place unit for surface mount connectors. Such printing-assembly module makes custom MEA circuit connections. Aim 3 focuses on integration of all module elements into a compact low-cost hybrid machine and development of machine control algorithms and intuitive user interface. Automated motion control of all machine actuators will be realized through cost-effective image processing algorithms using edge recognition and custom MEA designs. All three aims will include in vivo neural signal recordings for direct performance comparison between conventionally manual-made components/MEAs and counterparts made by developed technologies/machine. This proposed work will deliver to the neuroscience community an automatic tool for custom microwire MEA fabrication. It will make custom large-scale minimal-damaging microwire-based MEAs and low-cost chronic electrophysiological recording widely available, which helps provide further insights into our nervous system.
项目摘要 由于价格实惠,易于定制,以及上级慢性记录性能, 基于微电极阵列(MEA)是记录高时间分辨率神经活动的重要工具, 从机械学的角度理解神经系统。但是这种微丝MEA的潜力,特别是大的- 用目前科学需要的最小电线制成的规模的,受到劳动密集型制造的限制, 过程如果我们能有一个自动化的机器来完成简单,成熟,但繁琐的工作, 准确性、可重复性和吞吐量,它将大大降低劳动力成本,并实现精确处理 用于构建复杂的定制配置MEA。我们的长期目标是, 自动化制造和手术植入过程,以定制最小损伤的神经接口 植入物.本申请的近期目标是开发一种混合制造机(低于1万美元 台式工具),任何具有最少工程专业知识的神经科学实验室或部门都可以使用它来构建 定制线性MEA,满足其特定的电生理记录需求,仅需原材料成本。 我们假设,与传统的手动组装的微丝MEA相比,自动组装的微丝MEA 通过基于紫外激光的非接触式尖端制备、基于直接墨水写入(DIW)的电 连接,基于图像的对齐,和基于机器的操作将至少有相当的慢性- vivo录音性能,同时成本更少的人小时,使。该方案开发并验证了 使技术和自动机在三个特定的目标。Aim 1采用紫色激光切割, 同时进行的非接触线尖端锐化和绝缘剥离。将优化工艺参数, 碳纤维和金属(钨)微丝两者,以产生锥形尖锐尖端轮廓和所需的记录位点 目的2首先研究了导电薄膜的印刷适性和相图, 以及在我们的台式手工制造方案步骤中使用的密封环氧树脂。第二,我们将建立一个多- 喷嘴DIW系统,由喷嘴速度控制,以分配所需的环氧树脂尺寸/线宽, 用于表面贴装连接器的单元。这种印刷组装模块进行定制MEA电路连接。 目标3的重点是将所有模块元件集成到一个紧凑的低成本混合动力机器和开发 机器控制算法和直观的用户界面。所有机器执行器的自动运动控制 将通过具有成本效益的图像处理算法,使用边缘识别和自定义MEA来实现 的设计.所有这三个目标都将包括体内神经信号记录,用于直接比较 传统的手工制造的部件/多边环境协定和通过开发的技术/机器制造的对应物。 这项拟议的工作将提供给神经科学界的自动工具,自定义微丝MEA 制造。它将使定制的大规模最小损伤的微丝为基础的多边环境协定和低成本的慢性 电生理记录广泛可用,这有助于进一步了解我们的神经系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Chen其他文献

Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis

Lei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 46.64万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 46.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了