Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings
开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列
基本信息
- 批准号:10730576
- 负责人:
- 金额:$ 46.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiomedical ResearchChronicCommunitiesComplexCustomDedicationsDevelopmentDiameterElectric WiringElectrophysiology (science)ElementsEngineeringEnsureEnvironmentGenerationsGoalsHealthHourHybridsImageImplantInkIntuitionInvestmentsLasersLengthManualsMetalsMethodsMicroelectrodesMotionNervous SystemNeurosciencesOperative Surgical ProceduresPerformancePersonsPhasePositioning AttributePreparationPrintingProceduresProcessProtocols documentationScientistSiteSpeedSurfaceSystemTechniquesTechnologyTestingTungstenViolaWidthWorkWritingcarbon fibercareercostcost effectivedesignexperienceexperimental studyfabricationfeedingimage processingimplantationin vivoinnovationinsightmanufactureneuralneurotransmissionoperationprocess optimizationsealskillstemporal measurementtoolundergraduate student
项目摘要
Project Summary
Thanks to the affordability, ease of customization, and superior chronic recording performance, microwire-
based microelectrode array (MEA) is an important tool to record high temporal resolution neural activities to
understand the nervous system at a mechanistic level. But potential of such microwire MEA, especially large-
scale ones made with smallest wires of current scientific needs, is limited by the labor-intensive fabrication
process. If we could have the simple, mature, but tedious tasks done by an automatic machine with high
accuracy, repeatability, and throughput, it will dramatically decrease the labor cost and enable precise handling
of the smallest microwires to build complex custom configuration MEAs. Our longer-term goal is to fully
automate the fabrication and surgical implantation processes for custom minimal-damaging neural interface
implants. The near-term objective of this application is to develop a hybrid fabrication machine (less than $10k
benchtop tool), with which any neuroscience lab or department with minimal engineering expertise could build
custom linear MEAs for their specific electrophysiological recording needs with only raw material costs.
We hypothesize that, as compared to conventional manually assembled microwire MEAs, automatically
fabricated ones by violet laser-based contactless tip preparation, direct-ink-writing (DIW) based electrical
connection, image-based alignment, and machine-based manipulation will have at least equivalent chronic in-
vivo recording performance while costing fewer person-hours to make. This proposal develops and verifies
enabling technologies and the automatic machine in three Specific Aims. Aim 1 utilizes violet laser cutting for
concurrent contactless wire tip sharpening and insulation stripping. Process parameters will be optimized for
both carbon fiber and metal (tungsten) microwires to create conical sharp tip profiles and desired recording site
re-exposure area in one laser path. Aim 2 firstly investigates the printability and phase diagrams of conductive
and sealing epoxies used in our benchtop manual fabrication protocol steps. Secondly, we will develop a multi-
nozzle DIW system controlled by nozzle speed to dispense desired epoxy size/line width and a pick-and-place
unit for surface mount connectors. Such printing-assembly module makes custom MEA circuit connections.
Aim 3 focuses on integration of all module elements into a compact low-cost hybrid machine and development
of machine control algorithms and intuitive user interface. Automated motion control of all machine actuators
will be realized through cost-effective image processing algorithms using edge recognition and custom MEA
designs. All three aims will include in vivo neural signal recordings for direct performance comparison between
conventionally manual-made components/MEAs and counterparts made by developed technologies/machine.
This proposed work will deliver to the neuroscience community an automatic tool for custom microwire MEA
fabrication. It will make custom large-scale minimal-damaging microwire-based MEAs and low-cost chronic
electrophysiological recording widely available, which helps provide further insights into our nervous system.
项目摘要
由于价格实惠、易于定制以及卓越的慢速录制性能,Microwire-
微电极阵列(MEA)是记录高时间分辨率神经活动的重要工具
在机械学层面上理解神经系统。但这种微丝MEA的潜力,特别是大-
用当前科学需要的最小钢丝制造的规模,受到劳动密集型制造的限制
进程。如果我们可以用一台自动化机器来完成简单、成熟但乏味的任务
准确性、重复性和吞吐量,它将极大地降低人工成本并实现精确处理
最小的微导线来构建复杂的定制配置MEA。我们的长期目标是充分
自动化定制最小损伤神经接口的制造和外科植入过程
植入物。这项应用的近期目标是开发一种混合制造机器(不到1万美元
桌面工具),任何具有最低工程专业知识的神经科学实验室或部门都可以使用它
定制线阵MEA,以满足其特定的电生理记录需求,仅需原材料成本。
我们假设,与传统的手动组装微丝MEA相比,自动
基于紫光激光的非接触式针尖制备,基于直接墨水书写(DIW)的电子制造而成的
连接、基于图像的对齐和基于机器的操作将至少具有同等的慢性In-
实况录制性能,制作成本更少的工时。这项提案的开发和验证
使能技术和自动化机器有三个具体目标。AIM 1利用紫色激光切割
同时进行非接触式线尖打磨和绝缘剥离。将对工艺参数进行优化
碳纤维和金属(钨)微丝,可创建圆锥形尖端轮廓和所需的记录位置
在一条激光路径中重新曝光区域。目的2首先研究导电材料的印刷性能和相图。
以及用于我们的台式手动制造规程步骤中的密封环氧树脂。其次,我们将开发一种多
喷嘴DIW系统由喷嘴速度控制,以分配所需的环氧树脂尺寸/线宽和拾取和放置
用于表面安装连接器的单元。这样的印刷组装模块可以进行定制的MEA电路连接。
目标3专注于将所有模块元素集成到紧凑型低成本混合动力机器中并进行开发
机器控制算法和直观的用户界面。所有机器执行器的自动运动控制
将通过使用边缘识别和定制MEA的经济高效的图像处理算法来实现
设计。所有这三个目标都将包括活体神经信号记录,用于直接比较
传统上由手工制造的部件/多边环境协定和由发达技术/机器制造的对应物。
这项拟议的工作将为神经科学界提供一个定制微丝MEA的自动化工具
捏造。它将使定制大规模、最小损害的基于微丝的MEA和低成本的慢性
广泛使用的电生理记录,有助于进一步了解我们的神经系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Chen其他文献
Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
- DOI:
doi:10.1109/TSMC.2019.2932000 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Liu Zhao-Hua;Lu Bi-Liang;Wei Hua-Liang;Lei Chen;Li Xiao-Hua;Rätsch Matthias - 通讯作者:
Rätsch Matthias
Lei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 46.64万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 46.64万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 46.64万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 46.64万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 46.64万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 46.64万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 46.64万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 46.64万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 46.64万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 46.64万 - 项目类别:
Standard Grant














{{item.name}}会员




