Building a Learning Healthcare System to Understand and Improve Sepsis Outcomes in the VA TeleICU Network
建立学习医疗系统以了解和改善 VA TeleICU 网络中的败血症结果
基本信息
- 批准号:10816110
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Background: Sepsis, the body’s overwhelming systemic response to infection, strikes more than 1 million
patients annually in the United States and is known to impact over 48,000 Veterans every year. Over the past
decade, sepsis survival has continued to improve through a better understanding of effective therapies, early
intervention, and prophylaxis. This has been seen in the private sector and VA with inpatient mortality
dropping from 15% in 2008 to 10% in 2012. However, despite this improvement, a patient with sepsis may
have up to a 100% increased risk of death at 30 days depending on the hospital to which he/she is admitted in
the VA system.
Significance/Impact: This proposal is specifically designed to address three priority domains of the HSR&D
Service - Healthcare Informatics, Quality and Safety of Health Care, and Virtual Care. Through the unique
combination of these three domains we plan to address two significant limitations in understanding sepsis in
the VA; 1) that existing reports may or may not provide insight into the distinguishing characteristics of the
patients that died with sepsis in what are thought to be similar VA ICUs, and 2) in these reports there are
multiple interventions known or suspected to improve outcomes with varying levels of efficacy about which
little or no information is offered.
Innovation: We can use a novel data source (TeleICU) to directly identify the patient level factors associated
with negative outcomes in the septic patient population, quantify the practices of high and low performing
units, and subsequently improve the care provided to septic patients in VA ICUs using this information.
Specific Aims:
Aim #1: Evaluate risk factors of negative outcomes for specificity to sepsis and within sepsis types to
determine best strategies for adjustment and calculate risk-adjusted ICU mortality rates.
Aim #2: Evaluate the incidence of previously unmonitored elements of sepsis care (hypotension, ventilator
management, and antibiotics) and their impact on outcomes cited in SA1a (ICU mortality as primary
outcome) in VA sepsis patients.
Aim #3: Qualitatively examine the management of hypotension, lung protective ventilation, and antibiotic
therapy in sepsis patients at high and low performing sites (based on appropriately adjusted ICU mortality
rates). Evaluations will include documented protocols, clinical workflows, and TeleICU support.
Methodology: We will conduct a mixed methods investigation by merging data from the TeleICU and
Corporate Data Warehouse to first identify high and low performing ICUs in the treatment of sepsis. We will
then perform an ethnographic investigation of 3 high and low performing ICUs in the treatment of sepsis.
Simultaneously, we will examine the management of hypotension, the use of lung protective ventilation, and
the use and efficacy of antibiotics in septic patients in the ICU.
Next Steps/Implementation: We will develop real-time clinical decision support, to provide local clinicians
with updates on septic patients in the ICU that provide information regarding the state of septic patients and
their compliance with metrics that are associated with improved outcomes. We anticipate this will improve
the overall survival of sepsis patients and potentially reduce the cost of care.
背景:脓毒症是人体对感染的压倒性全身反应,
每年在美国的患者,并已知每年影响超过48,000名退伍军人。过去
十年来,通过更好地了解有效的治疗方法,
干预和预防。这已经在私营部门和退伍军人管理局的住院死亡率中看到
从2008年的15%下降到2012年的10%。然而,尽管有这种改善,脓毒症患者可能
在30天内死亡风险增加100%,具体取决于他/她入住的医院
的VA系统。
重要性/影响:本提案专门针对HSR&D的三个优先领域
服务-医疗保健信息学、医疗保健质量和安全以及虚拟医疗。通过独特的
结合这三个领域,我们计划解决两个重要的局限性,在理解脓毒症,
VA; 1)现有的报告可能会或可能不会提供洞察的区别特征,
在被认为是相似的VA ICU中死于败血症的患者,2)在这些报告中,
已知或怀疑可改善结局的多种干预措施,其疗效水平各不相同,
很少或没有提供信息。
创新:我们可以使用一种新的数据源(TeleICU)来直接识别相关的患者水平因素。
脓毒症患者人群的负面结果,量化高性能和低性能的实践,
单位,并随后改善护理提供给脓毒症患者在VA ICU使用这些信息。
具体目标:
目的#1:评价脓毒症特异性阴性结局的风险因素,并在脓毒症类型中,
确定调整的最佳策略,并计算风险调整后的ICU死亡率。
目的#2:评价脓毒症护理中先前未监测要素(低血压、呼吸机)的发生率
管理和抗生素)及其对SA 1a中引用的结局的影响(ICU死亡率作为主要
结果)。
目的#3:定性检查低血压、肺保护性通气和抗生素的管理
在高性能和低性能部位的脓毒症患者中进行治疗(基于适当调整的ICU死亡率
费率)。评估将包括记录的方案、临床工作流程和远程ICU支持。
方法学:我们将通过合并来自TeleICU的数据和
企业数据仓库首先识别脓毒症治疗中的高性能和低性能ICU。我们将
然后对治疗脓毒症的3个高性能和低性能ICU进行人种学调查。
同时,我们将检查低血压的管理,肺保护性通气的使用,
抗生素在重症监护病房脓毒症患者中的使用和疗效。
下一步/实施:我们将开发实时临床决策支持,为当地临床医生提供
ICU中脓毒症患者的最新情况,提供有关脓毒症患者状态的信息,
他们对与改善结果相关的指标的遵守情况。我们预计这将改善
脓毒症患者的总体生存率,并可能降低护理成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Marlow Blum其他文献
James Marlow Blum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Marlow Blum', 18)}}的其他基金
Building a Learning Healthcare System to Understand and Improve Sepsis Outcomes in the VA TeleICU Network
建立学习医疗系统以了解和改善 VA TeleICU 网络中的败血症结果
- 批准号:
10221781 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Building a Learning Healthcare System to Understand and Improve Sepsis Outcomes in the VA TeleICU Network
建立学习医疗系统以了解和改善 VA TeleICU 网络中的败血症结果
- 批准号:
10663774 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Trustworthy and Robust Federated Learning for Computational Healthcare
职业:用于计算医疗保健的值得信赖且强大的联邦学习
- 批准号:
2238743 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of information for improving the environment for learning together with and empowering healthcare students with disabilities
开发信息以改善与残疾医疗保健学生共同学习的环境并赋予其权力
- 批准号:
23K09562 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research Conference to develop a national healthcare workforce wellness research agenda for AHRQ in the Learning Health System (LHS) program
研究会议旨在为学习健康系统 (LHS) 计划中的 AHRQ 制定国家医疗保健劳动力健康研究议程
- 批准号:
10828162 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of mental management strategies for healthcare workers using a web-based learning program
使用基于网络的学习计划为医护人员制定心理管理策略
- 批准号:
23K12838 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Automated Multimodal Learning for Healthcare
职业:医疗保健自动化多模式学习
- 批准号:
2238275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
- 批准号:
10863717 - 财政年份:2023
- 资助金额:
-- - 项目类别:
What's the Big Deal About Big Data?: How Machine Learning is Transforming Health and Healthcare in Nova Scotia
大数据有什么大不了的?:机器学习如何改变新斯科舍省的健康和医疗保健
- 批准号:
485607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Miscellaneous Programs
Developing AI powered virtual patients in the Mediverse that adapt to learner’s cognitive load to improve learning outcomes for healthcare professionals and medical students.
在 Mediverse 中开发人工智能驱动的虚拟患者,适应学习者的认知负荷,以改善医疗保健专业人员和医学生的学习成果。
- 批准号:
10071011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Improving Healthcare AI-Support Systems for Visually Detectable Diseases: A Mixed Learning Approach on the Edge
改进视觉可检测疾病的医疗保健人工智能支持系统:边缘混合学习方法
- 批准号:
2891037 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship