A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
基本信息
- 批准号:10795414
- 负责人:
- 金额:$ 67.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAccelerationAdultAffectAgeAgingAortaArchivesArtificial IntelligenceBiologicalBiological MarkersBiology of AgingBloodBody CompositionBone DensityCalendarCardiovascular DiseasesCardiovascular systemCessation of lifeChronicChronic Kidney FailureChronologyCirrhosisClassificationClinicalCystDNA MethylationDataDatabasesDiagnostic testsDiseaseEarly InterventionEnd stage renal failureEpidemiologyEthnic PopulationEventFatty acid glycerol estersFrequenciesGeneral PopulationGoalsHealthHospitalizationImageInternational Classification of Disease CodesIschemic Bowel DiseaseKidneyKidney DiseasesLaboratoriesLaboratory FindingLengthLiverLower ExtremityMagnetic Resonance ImagingMeasuresMedical RecordsMethodsModelingMuscleOlder PopulationOrganOutcomePancreasPatientsPeripheral arterial diseasePersonsPhysical FunctionPopulationPopulation StudyRaceRecordsReference ValuesRenal Artery StenosisResearchResolutionResourcesRiskSamplingScanningSex DifferencesSkeletal MuscleSymptomsSystemTestingTissue ModelTissuesUnited StatesVariantX-Ray Computed Tomographyabdominal CTabdominal fatage differenceage relatedagedbonebrain magnetic resonance imagingcalcificationclinical diagnosisclinical practicecohortdeep learningdeep learning modeldensitydisease classificationfollow-uphigh riskimage archival systemimprovedliving kidney donormortalitypeerpopulation basedprognosticracial differencesextelomeretooltrend
项目摘要
PROJECT SUMMARY
There has been a dramatic increase in the number of persons living with reduced physical function and with
aging-related chronic conditions. If we compare chronological age (calendar-based age) with biological age
(changes at the cellular, tissue, organ, and system levels), we can classify persons as aging faster
(accelerated aging) or slower (successful aging) than their peers. Methods have been developed to measure
biological age based on DNA methylation, telomere length, and blood biomarkers. However, such measures
may not accurately reflect organ- and tissue-level changes from aging. A multi-organ/tissue approach is
needed to identify comprehensive age-related structural changes before signs, symptoms, or clinical
diagnoses occur. Abdominal computed tomography (CT) has widespread use in the general population (35%
of adults ages 20-89 years in an 11-year period). Quantitative measures of the organs and tissues on
abdominal CT may predict organ-specific diseases, or in combination, may be used to calculate biological age
and predict the more global outcomes of hospitalization and mortality. Therefore, our central hypothesis is that
deep learning (DL) models applied to abdominal CTs can quantify structural features of the organs and tissues
to identify persons with accelerated aging at high-risk for organ-specific disease, hospitalization, and death.
The Rochester Epidemiology Project record-linkage system provides access to a general population archive of
images for 423,081 abdominal CTs and to comprehensive medical record data among 181,187 adults (ages
20-89 years) between 2010-2020. Our team has already developed and validated DL tools to measure liver,
kidney, aorta, fat, muscle, and bone on abdominal CT images. We will leverage these resources to 1) establish
percentiles of abdominal CT biomarkers from both healthy and general population samples; 2) determine the
risk of organ-specific clinical disease by abdominal CT biomarkers in the general population; and 3) determine
the risk of hospitalization and death associated with abdominal CT measures in the general population. If
successful, application of DL tools to abdominal CT images will enrich the characterization of age-related
health risks without additional testing burden. Subclinical abdominal CT biomarkers may also inform the
biology of aging and early disease, improve disease classification, and provide opportunities for early
intervention.
项目摘要
生活减少的人数急剧增加,并且
与衰老有关的慢性病。如果我们将年龄(基于日历的年龄)与生物年龄进行比较
(在细胞,组织,器官和系统水平上发生变化),我们可以将人分类为更快的衰老
(加速衰老)或比同龄人慢(成功的衰老)。已经开发了测量方法
基于DNA甲基化,端粒长度和血液生物标志物的生物年龄。但是,这样的措施
可能无法准确反映衰老的器官和组织级别的变化。多器官/组织方法是
需要在迹象,症状或临床上确定与年龄相关的结构变化所需
发生诊断。腹部计算机断层扫描(CT)在一般人群中广泛使用(35%
在11年内20-89岁的成年人中)。器官和组织上的定量测量
腹部CT可能会预测器官特异性疾病,或结合使用,用于计算生物年龄
并预测住院和死亡率的全球结果。因此,我们的中心假设是
应用于腹部CTS的深度学习(DL)模型可以量化器官和组织的结构特征
确定在高危特异性疾病,住院和死亡的高风险时衰老的人。
罗切斯特流行病学项目记录链接系统提供了对一般人口档案的访问权限
423,081个腹部CTS的图像和181,187名成年人的全面病历数据(年龄
20 - 89年)在2010 - 2020年之间。我们的团队已经开发并验证了DL工具以测量肝脏,
腹部CT图像上的肾脏,主动脉,脂肪,肌肉和骨头。我们将把这些资源利用为1)建立
来自健康和普通人群样本的腹部CT生物标志物的百分位数; 2)确定
普通人群中腹部CT生物标志物患器官特异性临床疾病的风险; 3)确定
一般人群中与腹部CT措施相关的住院和死亡的风险。如果
成功的,将DL工具应用于腹部CT图像将丰富与年龄相关的表征
健康风险而没有其他测试负担。亚临床腹部CT生物标志物也可能告知
衰老和早期疾病的生物学,改善疾病分类,并为早期提供机会
干涉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW David RULE其他文献
ANDREW David RULE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW David RULE', 18)}}的其他基金
Automated detection of microstructural features that have unique protein markers and are prognostic for chronic kidney disease
自动检测具有独特蛋白质标记且可预测慢性肾脏病的微观结构特征
- 批准号:
10444797 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
The macro- and micro- anatomy and pathology of the aging kidney
衰老肾脏的宏观和微观解剖学及病理学
- 批准号:
8022523 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
The macro- and micro- anatomy and pathology of the aging kidney
衰老肾脏的宏观和微观解剖学及病理学
- 批准号:
8602520 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
The macro- and micro- anatomy and pathology of the aging kidney
衰老肾脏的宏观和微观解剖学及病理学
- 批准号:
8425058 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
The macro- and micro- anatomy and pathology of the aging kidney
衰老肾脏的宏观和微观解剖学及病理学
- 批准号:
8223232 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
Automated detection of microstructural features that have unique protein markers and are prognostic for chronic kidney disease
自动检测具有独特蛋白质标记且可预测慢性肾脏病的微观结构特征
- 批准号:
10600074 - 财政年份:2011
- 资助金额:
$ 67.06万 - 项目类别:
Comparison of kidney function measurement methods in the community
社区肾功能测量方法比较
- 批准号:
7928404 - 财政年份:2009
- 资助金额:
$ 67.06万 - 项目类别:
Comparison of kidney function measurement methods in the community
社区肾功能测量方法比较
- 批准号:
7484970 - 财政年份:2007
- 资助金额:
$ 67.06万 - 项目类别:
Comparison of kidney function measurement methods in the community
社区肾功能测量方法比较
- 批准号:
8139916 - 财政年份:2007
- 资助金额:
$ 67.06万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 67.06万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 67.06万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 67.06万 - 项目类别:
CHIcago Center for Accelerating nextGen Omics, deep phenotyping, and data science in Heart Failure (CHICAGO-HF)
芝加哥加速心力衰竭下一代组学、深度表型分析和数据科学中心 (CHICAGO-HF)
- 批准号:
10679082 - 财政年份:2021
- 资助金额:
$ 67.06万 - 项目类别: