Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development

使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发

基本信息

  • 批准号:
    10793211
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Xylyx is developing a pulmonary fibrosis disease modeling and anti-fibrotic compound testing platform aimed at improving the physiological relevance and predictive value of in-vitro models for idiopathic pulmonary fibrosis (IPF) to power the investigation of IPF disease biology and accelerate development of drugs to treat IPF. Devastating, intractable, and life-threatening, IPF is an interstitial lung disease characterized by obliteration of pulmonary alveoli and progressive loss of respiratory function. Over 55,000 new cases of IPF are diagnosed each year. Median survival is 3–4 years, and annual mortality in the US exceeds 40,000. The etiology and pathogenesis of IPF remain unknown. Predictive animal and in-vitro models of IPF for basic science research and drug development are severely lacking, leaving a significant unmet need and market opportunity for a physiologically-relevant in-vitro platform that enables high-fidelity cell-based phenotypic studies of IPF. This SBIR Fast Track will support development and validation studies for commercialization of an IPF disease modeling and compound testing platform that recapitulates in vitro key features of the human IPF disease environment and has been shown to support fibrotic phenotype of human lung fibroblasts to improve cell-based assays in early-stage anti-fibrotic drug discovery. The technological innovation is the product’s human IPF fibrotic lung specificity stemming from proprietary methods for isolating acellular human IPF lung extracellular matrix (ECM) with the composition and biomechanics of human IPF lung tissue. Our ‘physiomimetic approach’ yields standardized human fibrotic lung cell culture substrates for predictive in-vitro models of IPF that enable more physiologic and thus more predictive studies, providing a major competitive advantage over existing products like collagen-coated polystyrene plates. The goal is validation and commercialization of standard human IPF lung ECM disease modeling and compound testing platform for predictive in-vitro models of IPF to greatly reduce dependence on animal models and enable more relevant results for IPF drug developers. Specific aims are to: (i) determine transcriptomic and metabolomic profiles of lung fibroblasts in human IPF and normal lung ECM hydrogels, (ii) evaluate quality and consistency of human IPF and normal lung ECM hydrogels, (iii) perform compound testing studies with IPF standard-of-care drugs. After successful completion of the Fast Track project, Xylyx will commercialize the IPF compound testing platform to scientists in pharmaceutical companies in need of predictive IPF disease models for drug discovery and screening, thus reducing the significant costs associated with late-stage attrition due to poor efficacy, and facilitating the development of improved treatment options for the more than 3 million sufferers of IPF worldwide. The product of this SBIR Fast Track will immediately enter the rapidly growing cell culture market segment in biopharma and drug development, valued at USD $6.4B in 2014 and estimated to reach USD $29.2B by 2024, and will support drug development aimed at the USD $3.0B IPF treatment market.
项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John David O'Neill其他文献

John David O'Neill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John David O'Neill', 18)}}的其他基金

Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
  • 批准号:
    10515017
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
  • 批准号:
    10660437
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
  • 批准号:
    10609532
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
  • 批准号:
    10323494
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
Biomimetic lung sealant to rapidly heal pulmonary air leaks, decrease recovery time, and reduce associated costs to the healthcare system,
仿生肺密封剂可快速治愈肺部漏气、缩短恢复时间并降低医疗保健系统的相关成本,
  • 批准号:
    10005701
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了