Biomimetic lung sealant to rapidly heal pulmonary air leaks, decrease recovery time, and reduce associated costs to the healthcare system,
仿生肺密封剂可快速治愈肺部漏气、缩短恢复时间并降低医疗保健系统的相关成本,
基本信息
- 批准号:10005701
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAirAlveolarAnimalsBiocompatible MaterialsBiodegradationBiomimeticsBiotechnologyBloodCellsChestChest TubesChronicDataDevelopmentDrainage procedureElasticityEmpyemaExtracellular MatrixExtravasationFDA approvedFamily suidaeFistulaFormulationGluesGoalsHealthHealth Care CostsHealthcare SystemsHemostatic functionHumanImmobilizationImmune responseIncidenceInfectionInflammationInflammatoryInpatientsKnowledgeLength of StayLungLymphocyteMechanicsMedicineMethodsModelingModulusNatureNotificationOperative Surgical ProceduresOutcomePainPatient-Focused OutcomesPatientsPerformancePhasePneumoniaPolymersPorosityPostoperative ComplicationsPostoperative PeriodPreparationPuncture procedureRattusRecoveryResistanceRiskSafetyScienceSmall Business Innovation Research GrantStandardizationStructureStructure of parenchyma of lungSurgeonSurgical incisionsTensile StrengthTestingTherapeuticTimeTissuesToxic effectTraumaTraumatic injuryWorkbiomaterial compatibilitycommercial applicationcommercializationcostdesigndisease transmissionhealinghigh riskhospital readmissionimproved outcomein vitro testingin vivoinfection riskinnovationirritationmacrophagemimeticsneutrophilnovelpre-clinicalpressureregenerativerepairedrespiratoryresponsesealtechnological innovationwoundwound healing
项目摘要
ABSTRACT
Xylyx Bio is developing an innovative biomimetic lung-derived extracellular matrix (ECM) foam sealant
material that effectively seals and supports tissue healing for pulmonary air leaks after lung surgery and
thoracic trauma. Pulmonary air leak is one of the most common complications after lung surgery, leading to
extended chest tube drainage time, patient pain and immobilization, increased risk of infection and
bronchopleural fistulae, and subsequent longer hospital stay, with higher associated healthcare costs. In the
US alone, over 400,000 patients are at risk for developing pulmonary air leaks every year. Despite the high
risk, incidence, and cost of post-surgical pulmonary air leaks, an effective lung sealant is not available.
Several synthetic and naturally-derived materials have been tested, but none achieve the required tensile
strength, elasticity, adhesive strength and burst pressure resistance for reliably sealing and healing air leaks,
thus leaving a significant unmet need. This Phase I SBIR will develop, demonstrate performance,
and assess biocompatibility/systemic response of a biomimetic foam sealant comprised of lung ECM that
both seals and heals pulmonary air leaks, filling a known gap in therapeutic options for treating and managing
air leaks. The technological innovation is the demonstrably novel, unique ‘lung-mimetic’ foam sealant
features – porous (alveolar-like) structure, mechanics, and bioactivity – that enable rapid sealing and active
lung tissue healing, and the proprietary methods for isolating/processing lung ECM and formulating the
sealant. The long-term goal is to develop a lung-mimetic sealant that rapidly seals and heals pulmonary air
leaks, leading to reduction of recovery time, postoperative complications, and healthcare costs. The Phase I
hypothesis is that a lung-mimetic sealant comprised of lung tissue-derived ECM components with elastic
modulus and porosity similar to those of lung tissue can effectively seal and repair air leaks, with excellent
biocompatibility, appropriate biodegradation rate, and immunologic response that supports wound healing.
Specific aims are to establish lung sealant formulation that results in the desired lung-mimetic features,
demonstrate sealant performance in an ex-vivo swine lung model, and assess biocompatibility and systemic
response to the foam sealant in a rat model. After Phase I aims are accomplished, demonstrating safety and
efficacy in a large animal long-term survival model will be essential for development towards
commercialization. Thus, in Phase II, we will assess sealant performance and wound healing in a
chronic swine model to inform a preliminary draft of 510(k) premarket notification. Xylyx Bio will then work
towards making a lung-mimetic lung sealant commercially available to surgeons in need of a reliable,
effective lung sealant to reduce costs to the health care system and improve outcomes for patients
recovering from lung surgery and thoracic trauma.
抽象的
Xylyx Bio正在开发创新的仿生肺细胞外基质(ECM)泡沫密封剂
有效密封并支持肺部手术后肺部空气泄漏的组织愈合的材料
胸痛。肺部泄漏是肺手术后最常见的并发症之一,导致
延长胸管排水时间,患者疼痛和固定,感染风险增加和
支气管假设瘘,随后的住院时间更长,相关的医疗费用更高。在
仅美国,每年有超过40万名患者面临肺部泄漏的风险。尽管很高
手术后肺气泄漏的风险,事件和成本,有效的肺密封剂不可用。
已经测试过几种合成和自然衍生的材料,但没有人实现所需的拉伸材料
强度,弹性,粘合强度和抗压力抗性,可靠地密封和治愈空气泄漏,
I阶段I SBIR将发展,证明性能,
并评估肺ECM的仿生泡沫密封剂的生物相容性/全身反应
密封和治愈肺部空气泄漏,填补了治疗和管理的治疗选择的已知差距
空气泄漏。技术创新是明显的新颖,独特的“肺模仿”泡沫密封剂
特征 - 多孔(牙槽样)结构,力学和生物活性 - 可以快速密封和主动
肺组织愈合以及隔离/加工肺ECM并配制的专有方法
密封剂。长期目标是开发一种肺模拟密封剂,该密封剂迅速密封并治愈肺气
泄漏,导致恢复时间,术后并发症和医疗保健费用的减少。第一阶段
假设是,肺组织衍生的ECM成分积累了肺模拟密封剂
与肺组织类似的模量和孔隙率相似
生物相容性,适当的生物降解率和支持伤口愈合的免疫学反应。
具体目的是建立肺密封剂配方,从而产生所需的肺模拟特征,
在前体内猪肺模型中展示密封剂性能,并评估生物相容性和全身性
大鼠模型中对泡沫密封剂的响应。一阶段之后的目标完成后,证明了安全性和
大型动物长期生存模型的功效对于发展至关重要
商业化。在第二阶段,我们将评估密封剂性能和伤口愈合
慢性猪模型,以告知510(k)上市前通知的初步草案。 Xylyx Bio然后将工作
为了使需要可靠,
有效的肺密封剂可降低医疗保健系统的成本并改善患者的预后
从肺部手术和胸部创伤中恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John David O'Neill其他文献
John David O'Neill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John David O'Neill', 18)}}的其他基金
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
- 批准号:
10515017 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
- 批准号:
10660437 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
- 批准号:
10793211 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
- 批准号:
10609532 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别:
Lung fibrosis modeling and compound testing platform using fibrotic lung ECM that recreates the fibrotic disease environment to improve predictiveness and accelerate anti-fibrotic drug development
使用纤维化肺 ECM 的肺纤维化建模和复合测试平台,可重建纤维化疾病环境,以提高预测性并加速抗纤维化药物的开发
- 批准号:
10323494 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别:
相似国自然基金
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
- 批准号:22305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锂空气电池解耦电化学反应与固体产物存储的电极设计及关键传质问题研究
- 批准号:52376080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
固体氧化物燃料电池中Fe-Cr合金互连体与YSZ电解质的反应空气钎焊连接机理与接头组织调控研
- 批准号:52371024
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
常压空气暖等离子体耦合催化剂固氮研究
- 批准号:52377155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10442908 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10463117 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Supplement: Development of an Integrated 3D Human Osteo-Mucosal Model
补充:集成 3D 人体骨粘膜模型的开发
- 批准号:
10403365 - 财政年份:2021
- 资助金额:
$ 22.41万 - 项目类别: