High Density 3D Printed Microfluidics for Cell-Based Biomedical Applications
用于基于细胞的生物医学应用的高密度 3D 打印微流体
基本信息
- 批准号:10794133
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintBacteriaBiologicalBiological AssayBiological ModelsBiological ProcessBiological TestingCell MobilityCell physiologyCellsChemicalsChemotactic FactorsChemotaxisCuesDevelopmentDevelopmental BiologyDevice DesignsDevicesDiffusionEffectivenessElementsEvaluationGenerationsGeometryGoalsGrantGrowthGrowth FactorImmuneLiquid substanceMalignant NeoplasmsMeasurementMembraneMethodsMicrofluidic MicrochipsMicrofluidicsModelingMonitorNeoplasm MetastasisNutrientOrganismPhenotypePlant ResinsPopulationPrintingPropertyPumpReagentResearchResolutionRouteSeriesSignal TransductionSignaling MoleculeSourceSystemTechnologyTestingTimeTransport ProcessValidationWorkangiogenesiscell behaviorcell motilitydensitydesignexperiencefabricationflexibilityimprovedin vivoinventioniterative designmetabolic engineeringmicrofluidic technologynovelnovel strategiesopen sourcerapid testingresponsesimulationsuccesswound healing
项目摘要
Project Summary
Concentration gradients of growth factors, other cell-signaling molecules, and nutrients drive a wide
range of critical biological processes, including immune cell migration, angiogenesis, wound healing,
cancer metastasis, and organism development. Microfluidic devices are extensively used to both create
the relevant concentration gradient, and to monitor cellular behavior in response to that gradient.
Unfortunately, most concentration gradient microfluidic devices are designed assuming exclusively
diffusional transport processes, while incorporating advective transport decoupling strategies that are
largely ineffective and/or slow. This approach results in specific and important drawbacks, including low
dynamic range in the gradient, unstable gradients over the lifetime of the measurement, and
inconsistency in the gradient between different spatial regions of the device. As a result, existing
microfluidic approaches to concentration gradient construction do not adequately mimic the diffusion-
generated concentration gradients found in-vivo. Hence, there is a large unmet need for microfluidic
devices that can rapidly create stable and flexible concentration gradients that allow sensitive
monitoring of critical cellular processes.
This renewal proposal focuses on leveraging and extending sophisticated high resolution 3D
printing technology for microfluidics to create integrated devices that generate concentration gradients
with large dynamic range that are switchable between multiple source and sink solutions with
selectable concentration and rapid set up time (few minutes) to enable temporal multiplexing of
sequences of stable concentration gradients. Research efforts will consist of three specific aims. First,
3D simulation will be employed to evaluate a wide range of concentration gradient formation
geometries based on a new opposing-flow concept for source and sink fluids with the objective of
decoupling advective from diffusive mass transport, where the former is needed to replenish source
and sink fluids while the latter is required to generate the concentration gradient. Next, a variety of
candidate geometries will be 3D printed and tested to iteratively optimize concentration gradient
dynamic range, set up time, stability, and uniformity. The best candidates will be integrated with on-chip
pumps, valves, serial diluters, and reservoirs to create integrated systems. Finally, such devices will be
used to analyze chemotaxis of metabolically engineered bacteria. The new capabilities developed over
the grant period are designed to allow important questions to be answered with respect to
developmental biology, cellular response to nutritive cues, as well as angiogenesis, and cancer growth
and invasiveness.
项目摘要
生长因子、其他细胞信号分子和营养物质的浓度梯度驱动了广泛的生长。
一系列关键的生物过程,包括免疫细胞迁移,血管生成,伤口愈合,
癌症转移和生物体发育。微流体装置被广泛用于创建
相关的浓度梯度,并监测响应于该梯度的细胞行为。
不幸的是,大多数浓度梯度微流体装置被设计为仅假设
扩散输送过程,同时结合平流输送解耦策略,
很大程度上无效和/或缓慢。这种方法导致具体和重要的缺点,包括低
梯度的动态范围,在测量寿命期间不稳定的梯度,以及
设备的不同空间区域之间的梯度不一致。因此,现有
浓度梯度构造的微流体方法不能充分模拟扩散,
产生体内发现的浓度梯度。因此,对于微流体技术存在很大的未满足的需求。
可以快速产生稳定和灵活的浓度梯度的设备,
监测关键的细胞过程。
此更新建议侧重于利用和扩展复杂的高分辨率3D
用于微流体的打印技术,以创建产生浓度梯度的集成设备
具有大动态范围,可在多个源和接收器解决方案之间切换,
可选择的浓度和快速的设置时间(几分钟),以实现时间复用,
稳定的浓度梯度序列。研究工作将包括三个具体目标。第一、
将采用3D模拟来评估大范围的浓度梯度形成
几何形状基于一个新的逆流概念的源和汇流体的目标,
平流与扩散物质输送解耦,需要前者补充源
并且下沉流体,而后者需要产生浓度梯度。接下来,各种
候选几何形状将被3D打印和测试,以迭代优化浓度梯度
动态范围、建立时间、稳定性和均匀性。最佳候选产品将与片上
泵、阀、系列稀释器和储液器,以创建集成系统。最后,这些设备将
用于分析代谢工程菌的趋化性。开发的新功能
赠款期限旨在回答以下重要问题:
发育生物学、细胞对营养信号的反应以及血管生成和癌症生长
和侵略性。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Design and characterization of a package-less hybrid PDMS-CMOS-FR4 contact-imaging system for microfluidic integration.
用于微流体集成的无封装混合 PDMS-CMOS-FR4 接触成像系统的设计和表征。
- DOI:10.1117/1.jmm.17.3.034501
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Galan,Andres;Nordin,GregoryP;WoodChiang,Shiuh-Hua
- 通讯作者:WoodChiang,Shiuh-Hua
High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation.
- DOI:10.3390/polym14132537
- 发表时间:2022-06-22
- 期刊:
- 影响因子:5
- 作者:
- 通讯作者:
3D Printed Microfluidic Devices for Solid-Phase Extraction and On-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers
- DOI:10.1021/acs.analchem.0c01970
- 发表时间:2020-09-15
- 期刊:
- 影响因子:7.4
- 作者:Bickham, Anna, V;Pang, Chao;Woolley, Adam T.
- 通讯作者:Woolley, Adam T.
3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers.
3D打印的微流体设备,具有免疫亲和力整体,用于提取早产生物标志物。
- DOI:10.1007/s00216-018-1440-9
- 发表时间:2019-08
- 期刊:
- 影响因子:4.3
- 作者:Parker EK;Nielsen AV;Beauchamp MJ;Almughamsi HM;Nielsen JB;Sonker M;Gong H;Nordin GP;Woolley AT
- 通讯作者:Woolley AT
Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration.
- DOI:10.3390/mi14081589
- 发表时间:2023-08-12
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory P. Nordin其他文献
IEEE Journal of Selected Topics in Quantum Electronics
IEEE 量子电子学专题杂志
- DOI:
10.1109/jstqe.2020.2967441 - 发表时间:
2020 - 期刊:
- 影响因子:4.9
- 作者:
P. Asthana;Gregory P. Nordin;A. Tanguay;B. Keith Jenkins - 通讯作者:
B. Keith Jenkins
Analysis of weighted fan-out/fan-in volume holographic optical interconnections.
加权扇出/扇入体积全息光学互连分析。
- DOI:
10.1364/ao.32.001441 - 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
P. Asthana;Gregory P. Nordin;A. Tanguay;B. Keith Jenkins - 通讯作者:
B. Keith Jenkins
High Resolution, Biocompatible 3D Printing for Microfluidic Cell-Based Assays
用于微流控细胞检测的高分辨率、生物相容性 3D 打印
- DOI:
10.1109/biosensors58001.2023.10280959 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mawla Boaks;C. Roper;A. Woolley;Kenneth A. Christensen;Gregory P. Nordin - 通讯作者:
Gregory P. Nordin
Advancing the applications of 3D printed microfluidics: Utilizing quantum dots to measure internal temperature
推进 3D 打印微流控技术的应用:利用量子点测量内部温度
- DOI:
10.1016/j.ijheatmasstransfer.2025.127395 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:5.800
- 作者:
Derek Sanchez;Robert Macdonald;Brendan Mitchell;James Wade;McKay Wilkerson;Hunter Hinnen;Marshall Rawlins;Gregory P. Nordin;Adam T. Woolley;Troy R. Munro - 通讯作者:
Troy R. Munro
A rigorous unidirectional method for designing finite aperture diffractive optical elements.
用于设计有限孔径衍射光学元件的严格单向方法。
- DOI:
10.1364/domo.2000.dma4 - 发表时间:
2000 - 期刊:
- 影响因子:3.8
- 作者:
Gregory P. Nordin;Jianhua Jiang - 通讯作者:
Jianhua Jiang
Gregory P. Nordin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory P. Nordin', 18)}}的其他基金
High Density 3D Printed Microfluidics With Open Source Resins for Biomedical Applications
用于生物医学应用的采用开源树脂的高密度 3D 打印微流体
- 批准号:
9442402 - 财政年份:2017
- 资助金额:
$ 43.7万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 43.7万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant














{{item.name}}会员




