High Density 3D Printed Microfluidics With Open Source Resins for Biomedical Applications
用于生物医学应用的采用开源树脂的高密度 3D 打印微流体
基本信息
- 批准号:9442402
- 负责人:
- 金额:$ 41.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2020-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintBehaviorBiologicalBiological AssayBiological MarkersBiological ModelsCell SurvivalCellsCharacteristicsCoupledDNADataDetectionDevelopmentDevice DesignsDevice or Instrument DevelopmentDevicesDimensionsDrug resistanceEcosystemEffectivenessEquipmentFluorescenceFormulationGene ExpressionGenesGenomic DNAGenotypeGeometryGlassGoalsHealthHourHumanIndividualInflammationInjection of therapeutic agentInterferon Type IIInterferonsLab-On-A-ChipsLightLipopolysaccharidesLiquid substanceMeasurementMeasuresMedicalMessenger RNAMethodsMicroRNAsMicrofabricationMicrofluidic MicrochipsMicrofluidicsModelingMoldsOccupationsOpticsPathogen detectionPerformancePharmaceutical PreparationsPhenotypePhotosensitivityPlant ResinsPlasticizersPlasticsPrintingProteinsPumpReagentResearchRouteRunningSamplingScienceScreening for cancerSiliconSiteSourceSpeedStructureSystemTechniquesTechnologyTestingTimeTissue Engineeringbasebeta Actinbiomaterial compatibilitycell growthcostdensitydesigndigitaldrug discoveryexosomeimprovedinflammatory markerinnovationmechanical propertiesminiaturizeopen sourceoptical imagingpoint-of-care diagnosticspolydimethylsiloxanepolymerizationprotein expressionprototyperesistance genesuccesstooltwo-dimensional
项目摘要
Project Summary
Microfluidics (lab-on-a-chip) is a promising technology for an extremely broad range of biomedical
applications including drug discovery; tissue engineering; point-of-care diagnostics; cancer screening
based on rare cell detection, protein, DNA, or micro-RNA biomarkers, and more recently, circulating
exosomes. This proposal aims to revolutionize the biomedical microfluidic ecosystem by developing 3D
printing to routinely create very small, densely integrated microfluidic devices for the biomedical
sciences. Such devices are not possible with current microfluidic fabrication techniques, which typically
rely on careful alignment and bonding of a handful of individually fabricated layers, each of which has a
2D component layout. In contrast, 3D printing permits all 3 dimensions of the device volume to be fully
utilized for component placement and channel routing, offering the opportunity for dense component
integration and small device volume (~5 mm3). For example, we include a preliminary device design for
a multiplexed cell-based assay that tests both genotype (presence of the relevant gene) and phenotype
(cell characteristics and/or behavior) in a device volume of only 2.2 mm × 2.2 mm × 1 mm. The device
includes cell growth chambers, monoliths for mRNA capture and fluorescence measurement, and an
integrated pump and valves. Moreover, print runs <1 hour enable fast fabrication and test cycles to
dramatically speed device development. This proposal intends to initiate a virtuous circle in which 3D
printed microfluidics becomes a disruptive tool for biomedical innovation, which should have a
substantial impact on human health.
To date, the key inhibiting factor for 3D printing has been the inability of commercial 3D printers and
resins to fabricate the requisite microvoids that comprise microfluidic structures. Our group recently
demonstrated that proper formulation of photosensitive resins coupled with fundamental understanding
of the polymerization photophysics enables a low cost commercial stereolithographic (SL) 3D printer to
fabricate voids with minimum dimensions on the order of 100 µm. Aims 1 and 2 of this proposal will
build on this success by developing a 3D printer and commensurate low cost resins to fabricate valves
40x smaller than what we have already demonstrated, and flow channels with cross section dimensions
down to 24 x 30 µm2. These advances will be used in Aim 3 to construct high density microfluidic
devices that probe (1) expression of multiple genes in live cells and (2) quantify the viability of those
cells in a single device. The overall objective of these studies is to develop 3D printed microfluidic
systems with feature dimensions that are enabling for miniaturized cell-based bioanalysis.
项目摘要
微流控(芯片实验室)是一种非常有前途的生物医学技术,
应用包括药物发现;组织工程;床旁诊断;癌症筛查
基于稀有细胞检测、蛋白质、DNA或微RNA生物标志物,以及最近的循环
外来体该提案旨在通过开发3D技术来彻底改变生物医学微流体生态系统。
打印以常规地创建用于生物医学的非常小的、密集集成的微流体装置,
以理工科为重这样的装置对于当前的微流体制造技术是不可能的,该微流体制造技术通常
依赖于少数单独制造的层的仔细对准和粘合,其中每一层都具有
二维元件布局。相比之下,3D打印允许设备体积的所有3个维度完全被打印。
用于元件放置和通道布线,为密集元件提供机会
集成和小器件体积(~5 mm 3)。例如,我们包括一个初步的设备设计,
一种基于细胞的多重检测方法,可检测基因型(相关基因的存在)和表型
(cell在仅2.2 mm × 2.2 mm × 1 mm的器件体积中,
包括细胞生长室、用于mRNA捕获和荧光测量的整料以及
集成泵和阀门。此外,打印运行时间小于1小时,可实现快速制造和测试周期,
大大加快了设备的开发速度。该提案旨在启动一个良性循环,其中3D
打印微流体成为生物医学创新的颠覆性工具,这应该有一个
对人类健康产生重大影响。
到目前为止,3D打印的关键抑制因素是商业3D打印机无法使用,
树脂来制造包括微流体结构的必要的微空隙。我们组最近
证明了光敏树脂的适当配方加上基本的理解
聚合物物理学的发展使低成本的商业立体光刻(SL)3D打印机能够
制造最小尺寸为100 µm的空隙。本提案的目标1和2将
通过开发3D打印机和相应的低成本树脂来制造阀门,
比我们已经展示的小40倍,流道的横截面尺寸
缩小到24 x 30 µm2。这些进展将用于Aim 3,以构建高密度微流体
探测(1)活细胞中多个基因的表达和(2)量化这些基因的存活力的装置
在一个单一的设备中。这些研究的总体目标是开发3D打印微流体
具有特征尺寸的系统能够进行小型化的基于细胞的生物分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory P. Nordin其他文献
IEEE Journal of Selected Topics in Quantum Electronics
IEEE 量子电子学专题杂志
- DOI:
10.1109/jstqe.2020.2967441 - 发表时间:
2020 - 期刊:
- 影响因子:4.9
- 作者:
P. Asthana;Gregory P. Nordin;A. Tanguay;B. Keith Jenkins - 通讯作者:
B. Keith Jenkins
Analysis of weighted fan-out/fan-in volume holographic optical interconnections.
加权扇出/扇入体积全息光学互连分析。
- DOI:
10.1364/ao.32.001441 - 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
P. Asthana;Gregory P. Nordin;A. Tanguay;B. Keith Jenkins - 通讯作者:
B. Keith Jenkins
High Resolution, Biocompatible 3D Printing for Microfluidic Cell-Based Assays
用于微流控细胞检测的高分辨率、生物相容性 3D 打印
- DOI:
10.1109/biosensors58001.2023.10280959 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mawla Boaks;C. Roper;A. Woolley;Kenneth A. Christensen;Gregory P. Nordin - 通讯作者:
Gregory P. Nordin
Advancing the applications of 3D printed microfluidics: Utilizing quantum dots to measure internal temperature
推进 3D 打印微流控技术的应用:利用量子点测量内部温度
- DOI:
10.1016/j.ijheatmasstransfer.2025.127395 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:5.800
- 作者:
Derek Sanchez;Robert Macdonald;Brendan Mitchell;James Wade;McKay Wilkerson;Hunter Hinnen;Marshall Rawlins;Gregory P. Nordin;Adam T. Woolley;Troy R. Munro - 通讯作者:
Troy R. Munro
A rigorous unidirectional method for designing finite aperture diffractive optical elements.
用于设计有限孔径衍射光学元件的严格单向方法。
- DOI:
10.1364/domo.2000.dma4 - 发表时间:
2000 - 期刊:
- 影响因子:3.8
- 作者:
Gregory P. Nordin;Jianhua Jiang - 通讯作者:
Jianhua Jiang
Gregory P. Nordin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory P. Nordin', 18)}}的其他基金
High Density 3D Printed Microfluidics for Cell-Based Biomedical Applications
用于基于细胞的生物医学应用的高密度 3D 打印微流体
- 批准号:
10794133 - 财政年份:2017
- 资助金额:
$ 41.28万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 41.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 41.28万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 41.28万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 41.28万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 41.28万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 41.28万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 41.28万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 41.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 41.28万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 41.28万 - 项目类别:
Standard Grant














{{item.name}}会员




