Improved Spatial Resolution in Magnetoencephalography with an Optically Pumped Magnetometer Array
使用光泵磁力计阵列提高脑磁图的空间分辨率
基本信息
- 批准号:9552418
- 负责人:
- 金额:$ 69.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2019-03-26
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAdultAffectAnteriorAreaAuditoryAuditory areaBrainBrain DiseasesBrain imagingCalibrationChildClinicalCommunicationCortical ColumnDataDevelopmentDiagnosisDiscriminationEarly identificationElectroencephalographyEpilepsyFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHeadHelmetHumanIndividualLeadLongevityMagnetismMagnetoencephalographyMeasurementMeasuresNeuronsNeurosciencesNoiseOperative Surgical ProceduresOpticsOutcomeParticipantPatientsPhotic StimulationPositioning AttributePremature InfantPumpResearchResolutionScalp structureShapesSignal TransductionSourceStimulusSystemTechniquesTemperatureTestingTimeVariantVisualagedattenuationbasebrain dysfunctionbrain surgerycostcryogenicsdesigndevelopmental diseaseflexibilityfrontal lobehuman imagingimprovedinsightinterestmagnetic fieldmillimetermillisecondneuroimagingpediatric patientspreventrelating to nervous systemresponsesensorsignal processingsimulationsomatosensorysource localizationsuperconducting quantum interference devicetemporal measurementtool
项目摘要
Project Summary/Abstract
The fixed helmet design of commercially available magnetoencephalography (MEG) systems utilizing
superconducting quantum interference device (SQUID) magnetometers is designed to fit the 95th percentile of
head size and therefore gives suboptimal measurements of the MEG signals for most subjects, especially
children. A small head size will result in a gap between the helmet and head of several centimeters, and since
the MEG signal amplitude decays as 1/r3, where r is the distance from the neuronal source, this large gap can
result in signal attenuation by a factor of ~10. Therefore, placing the sensors on to the head will lead to
increases in signal amplitude. Additionally, if sensors are placed on or near the scalp, high spatial frequency
variations in the magnetic field will be detectable. Combining these factors, substantially improved spatial
resolution in localizing neuronal sources will be enabled. Recent developments in sensor design now makes
optically pumped magnetometers (OPMs) ideal for application to the field of MEG, and since they operate
above room temperature and can be constructed as individual sensor modules, the sensor layout can be
flexible. The long-term goal of this research is to develop a full-head MEG system based on OPMs that can
conform to any head size to give the largest possible signal while at a reduced cost compared to cryogenic
MEG. The objective of this proposal is to develop a 72-channel OPM MEG system giving partial head
coverage to demonstrate improved spatial resolution in the measurement of nearby neuronal sources within
the human brain. The system will be rapidly reconfigurable to concentrate the array coverage on an area of
interest. Our central hypothesis is that the close proximity of the OPM array will allow a new level of spatial
resolution for MEG. In Specific Aim 1, our current OPM-based MEG array with 20 channels will be expanded to
a reconfigurable 72-channel system. The reconfigurable array will accommodate varying head sizes,
particularly that of small adults and children, and the number of sensors will allow the array to be concentrated
over two sections of the brain simultaneously. In Specific Aim 2, analysis techniques specific to the
reconfigurable array will be developed. When the array is repositioned for each new subject, real-time array
calibration is required for accurate magnetic source localization and external noise suppression. In addition,
data simulation will optimize the positioning of the array and reveal the possible improvements in source
localization due to access to signals of higher spatial complexity. In Specific Aim 3, the source localization
precision between our OPM MEG array and a commercial SQUID-based MEG array will be compared. Tasks
involving auditory and visual stimulation will allow us to study spatial variation of brain activity due to changing
stimulus parameters. With the expected improvements in signal size and spatial resolution, higher fidelity MEG
measurements for people of all head sizes ranging from premature infants to the largest adults are enabled,
with broad ranging applications in neuroscience and in understanding and treating brain dysfunction.
项目摘要/摘要
利用市售磁脑摄影(MEG)系统的固定头盔设计
超导量子干扰装置(squid)磁力计设计为适合第95个百分点
头大小,因此给出了大多数受试者的MEG信号的次优测量
孩子们。头部尺寸很小会导致头盔和几厘米的头部之间的缝隙,并且
MEG信号振幅衰减为1/r3,其中r是距神经元来源的距离,这个较大的间隙可以
导致信号衰减约为10。因此,将传感器放在头上将导致
信号振幅增加。此外,如果传感器放置在头皮上或附近,则高空间频率
可以检测到磁场的变化。结合这些因素,大大改善了空间
将启用有关本地化神经元来源的分辨率。传感器设计的最新发展现在
光学泵送磁力计(OPMS)非常适合应用于MEG领域,并且由于它们运行
高于室温,可以作为单个传感器模块构造,传感器布局可以是
灵活的。这项研究的长期目标是开发基于OPM的全头MEG系统
符合任何头部尺寸,以降低成本,以发出最大可能的信号
梅格。该提案的目的是开发一个72通道OPM MEG系统,使部分头部
在测量附近神经元来源中,覆盖范围可以改善空间分辨率
人脑。该系统将迅速重新配置,以将阵列覆盖集中在
兴趣。我们的中心假设是OPM阵列的近距离将允许新的空间水平
梅格的决议。在特定目标1中,我们当前基于OPM的MEG阵列将扩展到20个渠道
可重新配置的72通道系统。可重新配置的阵列将容纳不同的头大小,
特别是成年人和儿童的,传感器的数量将允许阵列集中
大脑的两个部分同时。在特定目标2中,分析技术特定于
将开发可重新配置的阵列。为每个新主题重新定位阵列时,实时数组
准确的磁源定位和外部噪声抑制需要校准。此外,
数据模拟将优化数组的定位,并揭示源的可能改进
由于获得了较高的空间复杂性信号而导致的本地化。在特定的目标3中,来源本地化
将比较我们的OPM MEG阵列与基于商业鱿鱼的MEG阵列之间的精确度。任务
涉及听觉和视觉刺激将使我们能够研究随着变化而研究大脑活动的空间变化
刺激参数。信号大小和空间分辨率的预期改善,较高的保真度MEG
启用了从早产婴儿到最大成年人的所有头大小的人的测量
在神经科学以及理解和治疗脑功能障碍中的广泛应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter D. D. Schwindt其他文献
Peter D. D. Schwindt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter D. D. Schwindt', 18)}}的其他基金
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10697355 - 财政年份:2019
- 资助金额:
$ 69.98万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10813318 - 财政年份:2019
- 资助金额:
$ 69.98万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10201600 - 财政年份:2019
- 资助金额:
$ 69.98万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10471780 - 财政年份:2019
- 资助金额:
$ 69.98万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10020974 - 财政年份:2019
- 资助金额:
$ 69.98万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8296381 - 财政年份:2012
- 资助金额:
$ 69.98万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8471703 - 财政年份:2012
- 资助金额:
$ 69.98万 - 项目类别:
Improved Spatial Resolution in Magnetoencephalography with an Optically Pumped Magnetometer Array
使用光泵磁力计阵列提高脑磁图的空间分辨率
- 批准号:
9789869 - 财政年份:2012
- 资助金额:
$ 69.98万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8666751 - 财政年份:2012
- 资助金额:
$ 69.98万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
Unraveling the mechanisms of a novel music intervention for physical activity promotion in older adults
揭示新型音乐干预促进老年人身体活动的机制
- 批准号:
10766983 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10501720 - 财政年份:2022
- 资助金额:
$ 69.98万 - 项目类别:
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10678866 - 财政年份:2022
- 资助金额:
$ 69.98万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10444172 - 财政年份:2022
- 资助金额:
$ 69.98万 - 项目类别: