Programming Pharmacokinetics in Vivo via In Situ Switching of Nanoscale Particle

通过纳米级颗粒的原位切换对体内药代动力学进行编程

基本信息

项目摘要

DESCRIPTION (Provided by the applicant) Abstract: Controlling the pharmacokinetics and targeting of small molecule drugs and diagnostics is at the core of medicinal chemistry, pharmaceutical science and biomedical imaging. The intense interest in nanoscale vehicles designed for targeted delivery and detection in vivo is predicated on the idea that such materials may infer their pharmacokinetic, bioavailability and targeting properties on small molecules and other cargo including biomolecules. Such nanoscale packaging strategies have a key role in alleviating dose-limiting side effects associated with many otherwise clinically effective chemotherapeutic drugs presenting a major hurdle in the treatment of cancer. In addition, targeting diagnostics efficiently and selectively to given tissues while avoiding non-specific accumulation greatly enhances signal to noise in in vivo imaging applications. The naturally efficient targeting and infectious properties of biological disease vectors, in particular viruses, has made them models in efforts to design and develop synthetic and semisynthetic nanoscale vectors for targeted drug delivery. Therefore, research has focused on the development of appropriately decorated spherical particles of various sizes, degradability profiles, surface chemistry and material constitution. More recently, the extraordinary diversity of virus morphologies and an increasing ability to synthesize complex nanoscale structures, has inspired investigations into how shape can affect synthetic nanoscale particle interactions with cells and their behavior in vivo. In particular filamentous (or rod shaped) morphologies have been shown to have significantly different properties relative to their spherical analogues including longer blood circulation times and extended cell-uptake rates. The intriguing shape and size dependence of these key properties of delivery vectors inspires our proposal to develop nanoscale particles with switchable, transformable morphologies. We propose a novel class of materials capable of switchable, programmed pharmacokinetic profiles in vivo with utility in a range of functions including differential uptake into particular tissue types (e.g. tumor targeting vs liver uptake), stimulated renal clearance from systemic circulation, and evasion of macrophage uptake coupled with selective targeting. The goal of this research program is to develop materials capable of switching their pharmacokinetic and tissue targeting profiles in response to specific biochemical stimuli. This will be achieved utilizing a novel mechanism - stimuli-responsive nanoparticle morphology transitions. We propose a number of experiments for exploring the viability and validating this approach to vector directed targeting. Our preliminary pharmacokinetic data will be further validated in healthy mice and in vitro with macrophages, to examine our ability to control and switch several factors including: tissue accumulation, mode of clearance, circulation half-life, immune- response and degradation. Investigations will include targeted drug delivery, and targeting of diagnostics in the form of fluorescent labels and MRI-agents to human cancer cell lines in vitro and mouse cancer models in vivo. Public Health Relevance: The ability to accurately detect, diagnose and target diseased tissue is a key challenge in treating patients. This research program aims to discover new methods for specifically masking and targeting toxic anticancer drugs specifically to tumor cells and for labeling them for diagnosis. This is a novel approach to pharmaceutical and biomedical imaging science with broad, general implications for programmed, "smart" therapeutics for tackling as yet unsolved problems in the treatment of human disease including allevation of chemotherapy side-effects and early, accurate diagnoses.
描述(由申请人提供)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Claude Gianneschi其他文献

Nathan Claude Gianneschi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Claude Gianneschi', 18)}}的其他基金

Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
  • 批准号:
    10682623
  • 财政年份:
    2021
  • 资助金额:
    $ 232.38万
  • 项目类别:
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
  • 批准号:
    10282409
  • 财政年份:
    2021
  • 资助金额:
    $ 232.38万
  • 项目类别:
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
  • 批准号:
    10490414
  • 财政年份:
    2021
  • 资助金额:
    $ 232.38万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 232.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了