PHASE-FIELD SIMULATIONS OF THE MORPHOLOGICAL EVOLUTION OF LIPID BILAYER MEMBRAN

脂质双层膜形态演化的相场模拟

基本信息

  • 批准号:
    8364309
  • 负责人:
  • 金额:
    $ 0.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Biological membranes are structures composed of multiple lipid species and proteins. The lipids are bound only through hydrophobic interactions, creating a liquid-like structure. The plasma membrane, a lipid bilayer membrane surrounding all mammalian cells, is not homogeneous, but rather contains domains termed rafts, defined as regions enriched with cholesterol and saturated lipids. Understanding how and why these rafts form is of great importance to cell biologists and immunologists, since they are involved in many important cell functions and processes including endocytosis, cell adhesion, signaling, protein organization, lipid regulation, and infection by pathogens. These raft structures also show great potential for technological applications, especially in connection with biosensors and drug delivery systems. We examine phase separation (lipid raft formation) and morphological evolution of multicomponent lipid bilayer membranes. The model applies to membranes with planar and spherical background geometries, simulating a nearly planar portion of a membrane or an entire vesicle, respectively. The model treats the individual composition of each bilayer leaflet, which determines the spontaneous curvature. The compositions and shape of the membrane are coupled with a modified Helfrich free energy, which includes coupling between the leaflets compositions. The compositional evolution is modeled using a phase-field method and is described by a Cahn-Hilliard-type equation, while the shape changes are described by relaxation dynamics. For nearly planar bilayer systems we construct a phase diagram of equilibrium morphological phases in the composition space for a few values of the strength of the leaflet coupling. For vesicles modeled using a spherical background, our investigations have focused on how the dynamics are affected by spontaneous curvature effects.
这个子项目是许多利用资源的研究子项目之一 由NIH/NCRR资助的中心拨款提供。子项目的主要支持 而子项目的主要调查员可能是由其他来源提供的, 包括其它NIH来源。 列出的子项目总成本可能 代表子项目使用的中心基础设施的估计数量, 而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。 生物膜是由多种脂质和蛋白质组成的结构。脂质仅通过疏水相互作用结合,产生液体状结构。质膜是包围所有哺乳动物细胞的脂质双层膜,它不是均匀的,而是包含称为筏的结构域,筏被定义为富含胆固醇和饱和脂质的区域。了解这些筏形成的方式和原因对细胞生物学家和免疫学家非常重要,因为它们参与了许多重要的细胞功能和过程,包括内吞作用,细胞粘附,信号传导,蛋白质组织,脂质调节和病原体感染。这些筏结构也显示出巨大的技术应用潜力,特别是在生物传感器和药物输送系统方面。我们研究相分离(脂筏形成)和形态演变的多组分脂质双层膜。该模型适用于膜与平面和球形的背景几何形状,模拟一个膜或整个囊泡,分别接近平面的一部分。该模型处理每个双层小叶的个体组成,其决定自发曲率。膜的组成和形状与修改的Helfrich自由能耦合,其包括小叶组成之间的耦合。成分的演变是使用相场法建模,并描述了一个Cahn-Hilliard型方程,而形状的变化是由弛豫动力学描述。对于近平面的双层系统,我们构建了一个相图的平衡形态相在组合物空间的小叶耦合的强度的几个值。对于使用球形背景建模的囊泡,我们的调查集中在如何动态自发曲率效应的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAREN A THORNTON其他文献

KAREN A THORNTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAREN A THORNTON', 18)}}的其他基金

PHASE-FIELD SIMULATIONS OF THE MORPHOLOGICAL EVOLUTION OF LIPID BILAYER MEMBRAN
脂质双层膜形态演化的相场模拟
  • 批准号:
    8171925
  • 财政年份:
    2010
  • 资助金额:
    $ 0.11万
  • 项目类别:

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了