Design Optimization of Combined Magnetoencephalography and Susceptometry
脑磁图和磁感受计组合的设计优化
基本信息
- 批准号:8670741
- 负责人:
- 金额:$ 22.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlzheimer&aposs DiseaseAstrocytesBasic ScienceBiomedical ResearchBloodBlood VesselsBlood flowBrainBrain InjuriesCerebral cortexClaustrophobiasClinicalClinical ResearchComplexComputer softwareCouplingCustomDataDeep Brain StimulationDevicesDiseaseElectroencephalographyEngineeringEpilepsyExclusionFunctional Magnetic Resonance ImagingFutureGeometryGoalsHandHealthHemoglobinHumanHypertensionImageImageryImaging PhantomsImplantImplanted ElectrodesIndividualInvestigationMagnetic Resonance ImagingMagnetismMagnetoencephalographyMeasurementMeasuresMetabolismMetalsModelingNear-Infrared SpectroscopyNeuronsOxygenParkinson DiseasePatient CarePatientsPhysiciansPhysiologyPredispositionProcessProtocols documentationPublic HealthResearchResearch SubjectsResolutionRiskSamplingScientistSmooth Muscle MyocytesSpeedStreamStrokeSystemTechnologyTissuesTranslational ResearchTranslationsVariantWaterWorkbasebrain researchcancer therapyclinical applicationcommercializationcomparativedata managementdesignfile formathemodynamicshuman subjectimage registrationimplantable deviceimprovedinnovationinstrumentinstrumentationinterestmagnetic fieldmeetingsnanoparticlenervous system disorderneuroimagingneurovascular unitnovelnovel strategiespublic health relevancerelating to nervous systemresearch studyresponsespatiotemporalsuperconducting quantum interference devicetechnological innovation
项目摘要
DESCRIPTION (provided by applicant): Human brain activity invokes a complex interplay of neuron activity and spatiotemporal variations in metabolism, blood flow and blood oxygen level. These processes are functionally connected in neurovascular units of the brain, which are composed of integrated networks of neurons, astrocytes, and vascular smooth muscle cells. Impaired neurovascular coupling is implicated in stroke, hypertension, epilepsy, Alzheimer and Parkinson diseases and is the subject of intense biomedical research on network-level dynamics of human brain function. Current strategies for noninvasive neurovascular imaging focus on combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) and to a lesser degree on combined near-infrared spectroscopy (NIRS) and EEG or magnetoencephalography (MEG). There are however some fundamental limitations to existing multimodal neuroimaging approaches. The temporal resolution of fMRI, on the order of 0.5 Hz, limits the temporal precision of investigations into the dynamics of neurovascular coupling. NIRS overcomes the rate limitation of fMRI but is only sensitive to the outer regions of the cerebral cortex. Subject exclusion is a concern with MRI, which is unsafe for individuals with certain metal implants and is poorly tolerated by individuals with claustrophobia. Engineering advances are urgently needed to deliver spatially resolved, high-speed, matched imaging of neural and hemodynamic physiology. The objective of this project is to develop a new neuroimaging technology that meets these needs. The proposed system uses an innovative approach to integrating two capabilities of the superconducting quantum interference device (SQUID): biomagnetometer measurement of magnetic susceptibility and magnetoencephalography (MEG). Measuring neural activity with MEG is based on detecting the magnetic fields produced by active neurons. SQUID susceptibility measurement detects changes in the level of deoxygenated hemoglobin in the blood, similarly to fMRI, but with faster temporal sampling. An added benefit is that the proposed system is capable of high-precision dynamic imaging of magnetic nanoparticles, which opens up novel applications for targeted cancer therapies. Since the proposed system uses ultra-low field magnetics it may also be used to study neurovascular function in epilepsy for patients with implanted electrode arrays and in Parkinson disease for patients with implanted deep brain stimulation devices. This project specifically aims to optimize the spatial resolution and sampling rate of the proposed MEG-susceptometry system and to perform a comparative analysis between MEG-susceptometry and EEG-fMRI. The technological innovations from this project have the potential of delivering unprecedented precision and resolution in multimodal neuroimaging that will enable fundamental breakthroughs in neurovascular brain dynamics in normal and pathophysiological conditions. 1
描述(由申请人提供):人脑活动引起神经元活动与新陈代谢、血流和血氧水平的时空变化之间复杂的相互作用。这些过程在大脑的神经血管单元中功能性地连接,神经血管单元由神经元、星形胶质细胞和血管平滑肌细胞的集成网络组成。神经血管耦合受损与中风、高血压、癫痫、阿尔茨海默病和帕金森病有关,并且是对人脑功能网络级动力学进行深入生物医学研究的主题。目前的无创神经血管成像策略侧重于功能磁共振成像 (fMRI) 和脑电图 (EEG) 的组合,其次是近红外光谱 (NIRS) 和脑电图或脑磁图 (MEG) 的组合。然而,现有的多模式神经影像方法存在一些基本限制。 fMRI 的时间分辨率约为 0.5 Hz,限制了神经血管耦合动力学研究的时间精度。 NIRS 克服了功能磁共振成像的速率限制,但仅对大脑皮层的外部区域敏感。受试者排除是 MRI 的一个问题,这对于植入某些金属植入物的个体来说是不安全的,并且幽闭恐惧症患者的耐受性也很差。迫切需要工程进步来提供神经和血液动力学生理学的空间分辨、高速、匹配成像。该项目的目标是开发一种新的神经影像技术来满足这些需求。所提出的系统采用创新方法来集成超导量子干涉装置(SQUID)的两种功能:磁化率的生物磁力计测量和脑磁图(MEG)。使用 MEG 测量神经活动是基于检测活动神经元产生的磁场。 SQUID 敏感性测量可检测血液中脱氧血红蛋白水平的变化,与功能磁共振成像类似,但时间采样速度更快。另一个好处是,所提出的系统能够对磁性纳米粒子进行高精度动态成像,这为靶向癌症治疗开辟了新的应用。由于所提出的系统使用超低场磁场,因此它还可用于研究植入电极阵列的癫痫患者的神经血管功能和植入深部脑刺激装置的帕金森病患者的神经血管功能。该项目的具体目标是优化所提出的 MEG-susceptometry 系统的空间分辨率和采样率,并在 MEG-susceptometry 和 EEG-fMRI 之间进行比较分析。该项目的技术创新有可能在多模式神经成像中提供前所未有的精度和分辨率,这将使正常和病理生理条件下的神经血管脑动力学取得根本性突破。 1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Solomon Gilbert Diamond其他文献
Solomon Gilbert Diamond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Solomon Gilbert Diamond', 18)}}的其他基金
Design Optimization of Combined Magnetoencephalography and Susceptometry
脑磁图和磁感受计组合的设计优化
- 批准号:
8582318 - 财政年份:2013
- 资助金额:
$ 22.84万 - 项目类别:
Merging Diffuse Optical Tomography with EEG, MEG and MRI for Neurovascular Exams
将漫射光学断层扫描与 EEG、MEG 和 MRI 相结合进行神经血管检查
- 批准号:
7904126 - 财政年份:2009
- 资助金额:
$ 22.84万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 22.84万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 22.84万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 22.84万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 22.84万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 22.84万 - 项目类别:














{{item.name}}会员




