Data-driven approach for identifying subgroups using fMRI connectivity maps
使用功能磁共振成像连接图识别亚组的数据驱动方法
基本信息
- 批准号:8688047
- 负责人:
- 金额:$ 21.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehavioralBrainBrain MappingCategoriesClassificationClinicalClinical ResearchComputer softwareDataDiagnosisDiagnosticEnsureFunctional Magnetic Resonance ImagingGoalsHeterogeneityHumanIndividualManualsMapsMethodsModelingMonte Carlo MethodPopulationProceduresProcessResearchResearch PersonnelSamplingSubgroupTask PerformancesTechniquesTimeWorkbaseindexinginterestneuroimagingnovelnovel strategiesprogramspublic health relevance
项目摘要
DESCRIPTION (provided by applicant): Functional MRI (fMRI) researchers wishing to understand human brain processes increasingly estimate relations among regions of interest (ROIs) across time. Together, these estimates create a "connectivity map" of how brain processing occurs. One ubiquitous issue for most connectivity mapping methods is that they require homogeneity across individuals for reliable and valid results to be obtained. Researchers currently have no choice but to rely on homogeneity assumptions despite consistent evidence suggesting that brain processes vary substantially across human samples within control and clinical populations. Thus to examine differences between subgroups created according to demographic, behavioral or diagnostic indices, researchers must assume that all individuals within these subgroups are the same. There is a need in the field of neuroimaging for data-driven methods for identifying subgroups of individuals from their connectivity maps to accommodate within-subgroup heterogeneity. Data-driven subgroup classification could identify brain processes which relate to suboptimal task performance or specific diagnoses by subgrouping the entire sample in addition to helping researchers understand heterogeneity within subgroups. The present project aims to fill this demand by developing a novel approach for analyzing fMRI data which: 1) arrives at valid sample-level inferences that may be generalized to the population; 2) identifies subgroup classification for individuals; and 3) provides reliable parameter estimates at the individual level. After developing, validating, and implementing the new procedure, a program which builds from a successful novel algorithm developed by the present authors will be made freely available to the public.
描述(由申请人提供):希望了解人类大脑过程的功能性MRI(fMRI)研究人员越来越多地估计感兴趣区域(ROIs)之间随时间的关系。总之,这些估计创建了一个大脑处理如何发生的“连接图”。大多数连通性映射方法的一个普遍存在的问题是,它们需要跨个体的同质性以获得可靠和有效的结果。研究人员目前别无选择,只能依赖同质性假设,尽管一致的证据表明,在对照人群和临床人群中,人类样本的大脑过程存在很大差异。因此,为了检验根据人口统计学、行为或诊断指数建立的亚组之间的差异,研究人员必须假设这些亚组中的所有个体都是相同的。在神经成像领域中需要用于从个体的连接图识别个体的亚组以适应亚组内异质性的数据驱动的方法。数据驱动的亚组分类可以通过对整个样本进行分组来识别与次优任务表现或特定诊断相关的大脑过程,同时还可以帮助研究人员了解亚组内的异质性。本项目旨在通过开发一种分析fMRI数据的新方法来满足这一需求,该方法:1)达到有效的样本水平推断,可以推广到人口; 2)确定个体的亚组分类; 3)提供可靠的参数估计在个人水平。在开发、验证和实施新程序之后,由本作者开发的成功的新算法构建的程序将免费向公众提供。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating the use of the automated unified structural equation model for daily diary data.
- DOI:10.1080/00273171.2016.1265439
- 发表时间:2017
- 期刊:
- 影响因子:3.8
- 作者:Lane ST;Gates KM
- 通讯作者:Gates KM
Unsupervised Classification During Time-Series Model Building.
- DOI:10.1080/00273171.2016.1256187
- 发表时间:2017-03
- 期刊:
- 影响因子:3.8
- 作者:Gates KM;Lane ST;Varangis E;Giovanello K;Guskiewicz K
- 通讯作者:Guskiewicz K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Gates其他文献
Kathleen Gates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Gates', 18)}}的其他基金
Network Connectivity Modeling of Heterogeneous Brain Data to Examine Ensembles of Activity Across Two Levels of Dimensionality
异构大脑数据的网络连接建模,以检查两个维度上的活动集合
- 批准号:
9170562 - 财政年份:2016
- 资助金额:
$ 21.69万 - 项目类别:
Network Connectivity Modeling of Heterogeneous Brain Data to Examine Ensembles of Activity Across Two Levels of Dimensionality
异构大脑数据的网络连接建模,以检查两个维度上的活动集合
- 批准号:
9360107 - 财政年份:2016
- 资助金额:
$ 21.69万 - 项目类别:
Data-driven approach for identifying subgroups using fMRI connectivity maps
使用功能磁共振成像连接图识别亚组的数据驱动方法
- 批准号:
8583968 - 财政年份:2013
- 资助金额:
$ 21.69万 - 项目类别:
相似国自然基金
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
相似海外基金
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23K28389 - 财政年份:2024
- 资助金额:
$ 21.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
- 批准号:
2338596 - 财政年份:2024
- 资助金额:
$ 21.69万 - 项目类别:
Continuing Grant
Analysis of molecular and neural basis of the brain correlated with behavioral characteristics of cockroaches
与蟑螂行为特征相关的大脑分子和神经基础分析
- 批准号:
23K18148 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantifying behavioral and neurologic plasticity induced by EEG visual P300-Brain Computer Interface-enabled neurologic music therapy in children with cerebral palsy
量化脑瘫儿童脑电图视觉 P300 脑机接口支持的神经音乐疗法诱导的行为和神经可塑性
- 批准号:
495277 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Quantitative Electrophysiology to Link Neuroplasticity, Brain State, and Behavioral Change in Human Visual Cortex
定量电生理学将神经可塑性、大脑状态和人类视觉皮层的行为变化联系起来
- 批准号:
10643593 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
- 批准号:
23K02986 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23H03700 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Influence of DISC1 genetics on brain and behavioral development of offspring exposed to Maternal immune activation
DISC1 遗传学对暴露于母体免疫激活的后代大脑和行为发育的影响
- 批准号:
10607339 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:
Impacts of morphine and HIV-Tat exposures and dimethylfumarate treatment on brain BDNF and mitochondrial and behavioral dysfunction.
吗啡和 HIV-Tat 暴露以及富马酸二甲酯治疗对大脑 BDNF 以及线粒体和行为功能障碍的影响。
- 批准号:
10619675 - 财政年份:2023
- 资助金额:
$ 21.69万 - 项目类别:














{{item.name}}会员




