Network Connectivity Modeling of Heterogeneous Brain Data to Examine Ensembles of Activity Across Two Levels of Dimensionality
异构大脑数据的网络连接建模,以检查两个维度上的活动集合
基本信息
- 批准号:9360107
- 负责人:
- 金额:$ 36.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-27 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaAutomobile DrivingBehaviorBrainBrain regionCategoriesClassificationCognitionCommunitiesComplexComputer softwareDataData AnalysesDevelopmentDiagnosticDimensionsEnsureEquationExhibitsExperimental DesignsFemaleFunctional Magnetic Resonance ImagingGenderHeterogeneityHumanIndividualKnowledgeMapsMethodsModelingMonte Carlo MethodNetwork-basedNeurosciencesPatternPerformancePersonsProcessPropertyRecoveryResearchResearch PersonnelResolutionRestSpace ModelsSpecificityStatistical AlgorithmStatistical MethodsStatistical ModelsSubgroupSystemTechniquesTestingTimeattentional controlbasecognitive functioncognitive systemdesignexperienceflexibilityhigh dimensionalityinterestmalenetwork modelsnovelpreventrelating to nervous systemsensory systemtheoriestooltwo-dimensional
项目摘要
Project Summary/Abstract
Network methods have emerged as some of the most useful approaches for analyzing functional MRI
data. While great advancements have been made in these methods, limitations hamper the progress fMRI
researchers can make in better understanding brain processes. In particular, researchers are typically
limited to looking at properties within a network, such as how regions relate across time, and cannot
simultaneously look at relations between known networks. However, increasingly hypotheses require
understanding the brain at two scales: at the resolution of the regions of interest within a known network
and at the network level. Further hampering progress is that few network methods available can reliably
arrive at network models for individuals. Indeed, increasingly researchers are finding that brain
processes vary greatly across individuals, and thus methods are needed that do not assume homogeneity.
Brain processes in heterogeneous data can be better studied by using reliable and valid
approaches that attend to individual nuances while assessing relations within and between
networks.
We propose to develop, test, and freely disseminate an algorithm for the network-based analysis of brain
processes that attends to these problems. The theory driving our approach is that interactions within and
between large neural systems and brain areas – including multiple sensory systems, cognitive
functioning, and attentional control - drive behavior and subjective experiences by working in concert
with each other.
Towards these ends, our software will provide statistical inference frameworks for conducting network
connectivity and causal-inference analyses. Importantly, the proposed algorithm uniquely would enable
researchers to address data dimensionality by correlating ensembles existing at lower dimension brain
activity (i.e., data reduced to network activity) as well at higher dimensionality (i.e., the full functional
brain parcellated into regions) within a unified modeling framework. Following the first stage of
development and testing, we will validate the algorithms on data from within a highly controlled
experimental design.
项目总结/摘要
网络方法已经成为分析功能磁共振成像的最有用的方法之一
数据虽然这些方法已经取得了很大的进步,但局限性阻碍了fMRI的进展
研究人员可以更好地了解大脑过程。特别是,研究人员通常
仅限于查看网络内的属性,例如区域如何跨时间关联,
同时查看已知网络之间的关系。然而,越来越多的假设要求
在两个尺度上理解大脑:在已知网络内感兴趣区域的分辨率上
在网络层面。进一步阻碍进展的是,几乎没有可用的网络方法可以可靠地
得出个人的网络模型。事实上,越来越多的研究人员发现,
个体之间的过程差异很大,因此需要不假设同质性的方法。
使用可靠有效的方法可以更好地研究异质数据中的脑过程
在评估内部和之间的关系时注意个别细微差别的方法
网络.
我们建议开发,测试和免费传播一种基于网络的大脑分析算法。
解决这些问题的方法。驱动我们方法的理论是,
大型神经系统和大脑区域之间的联系-包括多个感觉系统,认知系统,
功能和注意力控制-通过协同工作来驱动行为和主观体验
彼此之间
为了实现这些目标,我们的软件将提供统计推断框架,
连通性和因果推理分析。重要的是,所提出的算法独特地将使
研究人员通过关联存在于较低维度大脑中的集合来解决数据维度问题
活动(即,简化为网络活动的数据)以及在更高维度(即,全功能
大脑分成区域)。在第一阶段之后,
开发和测试,我们将验证算法的数据从一个高度控制的
实验设计
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Gates其他文献
Kathleen Gates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Gates', 18)}}的其他基金
Network Connectivity Modeling of Heterogeneous Brain Data to Examine Ensembles of Activity Across Two Levels of Dimensionality
异构大脑数据的网络连接建模,以检查两个维度上的活动集合
- 批准号:
9170562 - 财政年份:2016
- 资助金额:
$ 36.81万 - 项目类别:
Data-driven approach for identifying subgroups using fMRI connectivity maps
使用功能磁共振成像连接图识别亚组的数据驱动方法
- 批准号:
8583968 - 财政年份:2013
- 资助金额:
$ 36.81万 - 项目类别:
Data-driven approach for identifying subgroups using fMRI connectivity maps
使用功能磁共振成像连接图识别亚组的数据驱动方法
- 批准号:
8688047 - 财政年份:2013
- 资助金额:
$ 36.81万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 36.81万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 36.81万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant














{{item.name}}会员




