Quantifying Axon Growth in Complex Environments
量化复杂环境中的轴突生长
基本信息
- 批准号:7629769
- 负责人:
- 金额:$ 30.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AxonBinding SitesBiocompatible MaterialsBiologicalBiomedical EngineeringCellsChondroitin Sulfate ProteoglycanCicatrixComplementComplexCuesCytoskeletonDevelopmentDimensionsElectric StimulationElectrochemistryElectrodesEnvironmentFactor VFilmGoalsGrowthHealthImage AnalysisIndividualInjuryIntegrinsKnowledgeLasersLesionLifeMeasuresMediatingMedicalMethodsMicrofabricationMicrotubulesMissionMolecularNatural regenerationNerveNerve Growth FactorsNerve RegenerationNervous system structureNeuritesNeuronsNeurotrophic Tyrosine Kinase Receptor Type 1Pathway interactionsPhosphotransferasesPopulationPositioning AttributePrincipal InvestigatorProblem SolvingProcessProtein KinaseRelative (related person)ResearchResearch PersonnelScienceSignal TransductionSiteSpectroscopy, Fourier Transform InfraredSpinal GangliaStimulusSurfaceTestingTimeVideo MicroscopyWestern BlottingWorkaxon growthaxon guidancebasechromophorecovalent bonddesignimprovedin vitro Modelinhibitor/antagonistinnovationlaminin-1multidisciplinarynerve injuryneurite growthneuron developmentneuronal growthpolypyrrolepublic health relevancereceptorresearch studyresponsevoltage
项目摘要
DESCRIPTION (provided by applicant): Quantifying Axon Growth in Complex Environments Project Summary: Our long-term objective is twofold: to elucidate the cellular and molecular mechanisms that underlie axon guidance after injury, and to develop biomaterial platforms to support and enhance axon growth. Our working hypothesis is that the combination of multiple growth-promoting cues will enable axon growth to overcome the local inhibitory environment (i.e., glial scar) that develops post-injury. To test this hypothesis will require the fabrication of a new physical platform upon which to study neuronal growth. The platform will (1) deliver a combination of growth-promoting cues in a controllable and quantifiable manner; and (2) provide a means by which to test a stimulatory environment against an inhibitory environment. These platforms will make possible innovative experiments that will test for the first time how combinations of guidance cues promote axon growth in an inhibitory environment. Relevant to NIBIB's mission to improve health by promoting fundamental discoveries, design, and development in bioengineering, our objective is to correlate axon growth and direction to specific quantities and ratios of stimulatory and inhibitory cues, thus establishing the basis for new strategies for nerve regeneration. This innovative multidisciplinary proposal combines the complimentary expertise of the Principal Investigator in neuronal development, regeneration, and biomaterials and the Co-Investigator in electrochemistry, microfabrication, and surface characterization, to fabricate a platform capable of delivering precise quantities of both biological guidance cues and electrical stimulation (Aim 1). Aim 2 focuses on determining if specific stimulatory guidance cues (i.e., electrical stimulation, laminin-1, and nerve growth factor) are synergistic at enhancing neurite growth. Aim 3 focuses on determining if specific stimulatory guidance cues can promote neurite growth to overcome an inhibitory environment (i.e., chondroitin sulfate proteoglycans). With pharmacological inhibitors and laser inactivation approaches, we will determine how integrin and trk receptors and downstream kinases that converge on the microtubule cytoskeleton function to interpret multiple guidance cues. Results from these studies will advance the field of biomaterials for nerve regeneration by providing more comprehensive knowledge of the requirements for axon growth in complex environments. PUBLIC HEALTH RELEVANCE: Nerves fail to regenerate after injury and current medical practice is unable to manipulate effectively the process of nerve regeneration. The proposed research seeks to solve this problem by quantifying how guidance cues, both individually and in combination, promote axon growth in an inhibitory environment such as a nerve injury site.
描述(由申请人提供):在复杂环境中量化轴突生长项目摘要:我们的长期目标是双重的:阐明损伤后轴突引导的细胞和分子机制,并开发生物材料平台以支持和增强轴突生长。 我们的工作假设是,多种生长促进线索的组合将使轴突生长能够克服局部抑制环境(即,神经胶质瘢痕),其在损伤后发展。 为了验证这一假设,需要制造一个新的物理平台来研究神经元的生长。 该平台将(1)以可控和可量化的方式提供生长促进线索的组合;以及(2)提供一种测试刺激环境与抑制环境的方法。 这些平台将使创新实验成为可能,这些实验将首次测试指导线索的组合如何在抑制环境中促进轴突生长。 NIBIB的使命是通过促进生物工程的基础发现、设计和开发来改善健康,我们的目标是将轴突生长和方向与刺激和抑制线索的特定数量和比例相关联,从而为神经再生的新策略建立基础。 这项创新的多学科提案结合了主要研究者在神经元发育,再生和生物材料方面的互补专业知识以及电化学,微加工和表面表征方面的共同研究者,以制造能够提供精确数量的生物指导线索和电刺激的平台(目标1)。 目标2集中于确定特定刺激引导线索(即,电刺激、层粘连蛋白-1和神经生长因子)在增强神经突生长方面是协同的。 目的3集中于确定特定的刺激性引导线索是否可以促进神经突生长以克服抑制性环境(即,硫酸软骨素蛋白聚糖)。 通过药理学抑制剂和激光灭活方法,我们将确定整合素和trk受体以及聚集在微管细胞骨架功能上的下游激酶如何解释多种指导线索。 这些研究的结果将通过提供复杂环境中轴突生长要求的更全面知识来推进神经再生生物材料领域。 公共卫生关系:神经损伤后不能再生,目前的医学实践无法有效地操纵神经再生的过程。 拟议的研究试图通过量化指导线索如何单独和组合促进轴突在抑制环境(如神经损伤部位)中的生长来解决这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Hoffman-Kim其他文献
Diane Hoffman-Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Hoffman-Kim', 18)}}的其他基金
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 30.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 30.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 30.61万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 30.61万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 30.61万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 30.61万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 30.61万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 30.61万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 30.61万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 30.61万 - 项目类别:
Standard Grant