Autosegmentation for head and neck Radiotherapy
头颈放射治疗的自动分割
基本信息
- 批准号:7571714
- 负责人:
- 金额:$ 35.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomic structuresAtlasesBrainClinicalComputer SystemsComputersCoupledDoseGoalsHead and Neck CancerHead and neck structureHealthcareHumanImageInstitutionIntracranial NeoplasmsMagnetic Resonance ImagingMalignant Intracranial NeoplasmManualsMethodologyMethodsModificationOutcomePatientsProcessRadiation OncologyRadiation therapyResearchSliceStructureSystemTechnologyTestingTimebasecancer therapyclinical practicecomputerizedcost effectivenessexperienceimprovedtreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): We propose to develop, implement, and test the methodology required to automate the segmentation of structures in the treatment planning images of patients with intracranial and head- and-neck cancers. Delineating critical structures for radiotherapy of the brain is required for advanced radiotherapy technologies to determine if the dose from the proposed treatment will impair the functionality of the structures. Employing an automatic segmentation computer module in the radiation oncology treatment planning process has the potential to significantly increase the efficiency, cost- effectiveness, and, ultimately, clinical outcome of patients undergoing radiation therapy. Such a system would address the formidable labor- and time-intensive challenges associated with the current practice of manually delineating normal anatomical structures on the serial slices of treatment planning images. Specifically, we propose to (1) further improve, implement, and test the semi-automatic atlas-based segmentation algorithms we have developed at our institution for the contouring of intracranial structures and substructures for the treatment of patients with small to moderate size intracranial tumors, (2) to develop, implement, and test atlas-based segmentation algorithms for the contouring of intracranial structures and substructures for the treatment of patients with large space-occupying intracranial tumors, and (3) to quantify the reduction in user-interaction time afforded by these methods in the clinical setting.
描述(由申请人提供):我们建议开发、实施和测试在颅内和头颈部癌症患者的治疗计划图像中自动分割结构所需的方法。先进的放射治疗技术需要描绘大脑放射治疗的关键结构,以确定拟议治疗的剂量是否会损害这些结构的功能。在放射肿瘤学治疗计划过程中使用自动分割计算机模块有可能显著提高接受放射治疗的患者的效率、成本效益以及最终的临床结果。这样的系统将解决与目前在治疗计划图像的连续切片上手动描绘正常解剖结构的做法相关的艰巨的劳动力和时间密集型挑战。具体地说,我们建议(1)进一步改进、实施和测试我们在本机构为治疗中小型颅内肿瘤患者而开发的基于图谱的半自动分割算法,(2)开发、实施和测试基于图谱的分割算法来绘制颅内结构和亚结构的轮廓,用于治疗大型占位性颅内肿瘤,以及(3)量化这些方法在临床环境中提供的用户交互时间的减少。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENOIT M. DAWANT其他文献
BENOIT M. DAWANT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENOIT M. DAWANT', 18)}}的其他基金
Computer-assisted, image-guided programming of Cochlear Implants
人工耳蜗的计算机辅助、图像引导编程
- 批准号:
9020428 - 财政年份:2015
- 资助金额:
$ 35.3万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




