A Modeling Framework for Multi-View Data, with Applications to the Pioneer 100 Study and Protein Interaction Networks

多视图数据建模框架,及其在 Pioneer 100 研究和蛋白质相互作用网络中的应用

基本信息

  • 批准号:
    9361170
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

New advances in biomedical research have made it possible to collect multiple data “views” — for example, genetic, metabolomic, and clinical data — for a single patient. Such multi-view data promises to offer deeper insights into a patient's health and disease than would be possible if just one data view were available. However, in order to achieve this promise, new statistical methods are needed. This proposal involves developing statistical methods for the analysis of multi-view data. These methods can be used to answer the following fundamental question: do the data views contain redundant information about the observations, or does each data view contain a different set of information? The answer to this question will provide insight into the data views, as well as insight into the observations. If two data views contain redundant information about the observations, then those two data views are related to each other. Furthermore, if each data view tells the same “story” about the observations, then we can be quite confident that the story is true. The investigators will develop a unified framework for modeling multi-view data, which will then be applied in a number of settings. In Aim 1, this framework will be applied to multi-view multivariate data (e.g. a single set of patients, with both clinical and genetic measurements), in order to determine whether a single clustering can adequately describe the patients across all data views, or whether the patients cluster separately in each data view. In Aim 2, the framework will be applied to multi-view network data (e.g. a single set of proteins, with both binary and co-complex interactions measured), in order to determine whether the nodes belong to a single set of communities across the data views, or a separate set of communities in each data view. In Aim 3, the framework will be applied to multi-view multivariate data in order to determine whether the observations can be embedded in a single latent space across all data views, or whether they belong to a separate latent space in each data view. In Aims 1–3, the methods developed will be applied to the Pioneer 100 study, and to the protein interactome. In Aim 4(a), the availability of multiple data views will be used in order to develop a method for tuning parameter selection in unsupervised learning. In Aim 4(b), protein communities that were identified in Aim 2 will be validated experimentally. High-quality open source software will be developed in Aim 5. The methods developed in this proposal will be used to determine whether the findings from multiple data views are the same or different. The application of these methods to multi-view data sets, including the Pioneer 100 study and the protein interactome, will improve our understanding of human health and disease, as well as fundamental biology.
生物医学研究的新进展使得收集多种数据“视图”成为可能——例如, 单个患者的遗传、代谢组学和临床数据。这种多视图数据有望提供更深入的 与仅提供一个数据视图相比,可以更深入地了解患者的健康和疾病。然而,在 为了实现这一承诺,需要新的统计方法。 该提案涉及开发用于分析多视图数据的统计方法。这些方法可以 用于回答以下基本问题:数据视图是否包含有关数据的冗余信息 观察,或者每个数据视图是否包含一组不同的信息?这个问题的答案将提供 洞察数据视图以及洞察观察结果。如果两个数据视图包含冗余信息 关于观察结果,那么这两个数据视图是相互关联的。此外,如果每个数据视图都告诉 如果我们的观察结果有相同的“故事”,那么我们就可以非常确信这个故事是真实的。 研究人员将开发一个统一的多视图数据建模框架,然后将其应用于 一些设置。在目标 1 中,该框架将应用于多视图多元数据(例如,单组 患者的临床和遗传测量),以确定单个聚类是否可以 充分描述所有数据视图中的患者,或者患者是否在每个数据中单独聚类 看法。在目标 2 中,该框架将应用于多视图网络数据(例如,一组蛋白质,同时具有 测量二元和复合体相互作用),以确定节点是否属于单个集合 跨数据视图的社区,或每个数据视图中的一组单独的社区。在目标 3 中,框架 将应用于多视图多元数据,以确定观察结果是否可以嵌入 跨所有数据视图的单个潜在空间,或者它们是否属于每个数据视图中的单独潜在空间。 在目标 1-3 中,开发的方法将应用于 Pioneer 100 研究和蛋白质相互作用组。在 目标 4(a),将使用多个数据视图的可用性来开发调整参数的方法 无监督学习中的选择。在目标 4(b) 中,将验证目标 2 中确定的蛋白质群落 实验性地。目标 5 将开发高质量的开源软件。 本提案中开发的方法将用于确定来自多个数据视图的结果是否 相同或不同。这些方法在多视图数据集上的应用,包括 Pioneer 100 研究 和蛋白质相互作用组,将提高我们对人类健康和疾病以及基本原理的理解 生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Bien其他文献

Jacob Bien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Bien', 18)}}的其他基金

A Modeling Framework for Multi-View Data, with Applications to the Pioneer 100 Study and Protein Interaction Networks
多视图数据建模框架,及其在 Pioneer 100 研究和蛋白质相互作用网络中的应用
  • 批准号:
    9752596
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了