CRISPR/Cas9-Based Gene Editing for the Correction of Duchenne Muscular Dystrophy
基于 CRISPR/Cas9 的基因编辑用于纠正杜氏肌营养不良症
基本信息
- 批准号:9237199
- 负责人:
- 金额:$ 33.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal Disease ModelsAnimal ModelAreaBiocompatible MaterialsBioinformaticsBiological ModelsBiomedical ResearchBiotechnologyBrainCRISPR/Cas technologyCapsidCellsClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsComplexCreatine KinaseCultured CellsDNADNA SequenceDNA Sequence AlterationDegenerative DisorderDependovirusDevelopmentDiseaseDobutamineDoseDuchenne muscular dystrophyDyesDystrophinElectrocardiogramEngineeringEnzymesExcisionExonsExposure toGene DeliveryGene MutationGene Transduction AgentGenesGeneticGenetic MaterialsGenomeGenome engineeringGenomic DNAGoalsHIVHereditary DiseaseHumanIn VitroInheritedLeadLengthLiverMalignant NeoplasmsMediatingMessenger RNAMethodsModelingModificationMusMuscleMuscle CellsMuscle functionMusculoskeletalMutateMutationMyocardiumMyopathyNatureNerve DegenerationNeuromuscular DiseasesNonsense CodonNucleic AcidsOther GeneticsPaste substancePatientsPhenotypeProteinsReagentResearchResearch ProposalsSafetySequence HomologySerotypingSiteSite-Directed MutagenesisSkeletal MuscleSomatic CellSourceStem cellsStress TestsSystemT-LymphocyteTechnologyTestingTranscriptWorkadeno-associated viral vectorbaseclinical candidateclinical developmentclinical translationdesigngene correctiongene replacementgene therapygenome editingin vivoinnovationinterestmdx mousemouse genomemouse modelmutantnovelnucleasepreclinical studypromoterpublic health relevancerepairedrestorationtechnology developmenttooluptakevector
项目摘要
DESCRIPTION (provided by applicant)
Gene therapy is a promising approach to treating Duchenne Muscular Dystrophy (DMD). However, current methods typically require the addition of extra dystrophin genes to the genome or the lifelong re- administration of foreign genetic material that works transiently to restore dystrophin expression, both of which have significant safety and practical concerns. Furthermore, these strategies have been limited by an inability to deliver the large and complex dystrophin gene sequence. An appealing alternative to these gene replacement approaches is the targeted repair of the endogenous mutant dystrophin gene. This concept, known as genome editing, represents a potential cure to DMD without the need for permanent integration of or repeated exposure to foreign biological material. Furthermore, it corrects the problem at the source by correcting the mutation to the naturally occurring dystrophin gene. Genome editing has been made a reality for human gene therapy by the recent development of transformative technologies that use engineered enzymes to cut and paste DNA sequences at specific sites in the genome. In fact, genome editing is now in clinical trials for treating cancer and HIV. The most recently developed genome editing technology, known as CRISPR, is much more robust than previous technologies and has rapidly transformed all areas of biomedical research and biotechnology in less than two years. Several efforts are underway to use CRISPR to correct genetic diseases, and we have demonstrated that it is possible to restore dystrophin expression in muscle cells from DMD patients. However, for this to be viable for clinical translation, we must
demonstrate successful genome editing in skeletal and cardiac muscle tissue in animal models of the disease. In this study, we will use adeno- associated virus to delivery CRISPR to skeletal and cardiac muscles of a mouse model of DMD and a mouse model carrying the human dystrophin gene. The overall objective of this research proposal is to develop methods to restore dystrophin expression via targeted genome editing in vivo. The central hypothesis is that nuclease-mediated gene correction will lead proper dystrophin expression and function in mouse models of DMD. This research plan is innovative because it capitalizes on the unfulfilled potential of the CRISPR genome editing technology to address the fundamental limitations of conventional gene therapies and the unmet need for a safe and effective permanent cure to DMD. Importantly, this approach is also broadly applicable to numerous genetic diseases in addition to DMD. Thus in addition to identifying a lead candidate nuclease and delivery method for treatment of DMD, this work will also lead to additional development and refinements of the CRISPR technology to broadly benefit patients affected by hereditary disorders. Finally, the development of technologies for in vivo genome editing in skeletal and cardiac muscle will be broadly useful for biotechnology and basic scientific research.
描述(由申请人提供)
基因治疗是治疗杜氏肌营养不良症(DMD)的一种很有前途的方法。然而,目前的方法通常需要向基因组中添加额外的肌营养不良蛋白基因或终身重新施用外源遗传物质,其瞬时起作用以恢复肌营养不良蛋白表达,这两者都具有显著的安全性和实际问题。此外,这些策略受到无法递送大而复杂的肌营养不良蛋白基因序列的限制。这些基因替代方法的一个有吸引力的替代方案是内源性突变型肌营养不良蛋白基因的靶向修复。这种被称为基因组编辑的概念代表了DMD的潜在治愈方法,而无需永久整合或重复暴露于外来生物材料。此外,它通过纠正天然存在的肌营养不良蛋白基因的突变来纠正源头问题。基因组编辑已经成为人类基因治疗的现实,这是通过最近开发的变革性技术实现的,这些技术使用工程酶在基因组中的特定位点切割和粘贴DNA序列。事实上,基因组编辑现在正在进行治疗癌症和艾滋病毒的临床试验。最新开发的基因组编辑技术CRISPR比以前的技术更加强大,在不到两年的时间里迅速改变了生物医学研究和生物技术的所有领域。目前正在努力使用CRISPR来纠正遗传疾病,我们已经证明有可能恢复DMD患者肌肉细胞中的肌营养不良蛋白表达。然而,为了使其适用于临床翻译,我们必须
在该疾病的动物模型中,在骨骼肌和心肌组织中展示成功的基因组编辑。在这项研究中,我们将使用腺相关病毒将CRISPR递送到DMD小鼠模型和携带人肌营养不良蛋白基因的小鼠模型的骨骼肌和心肌。这项研究提案的总体目标是开发通过体内靶向基因组编辑恢复肌营养不良蛋白表达的方法。核心假设是核酸酶介导的基因校正将导致DMD小鼠模型中适当的肌营养不良蛋白表达和功能。这项研究计划具有创新性,因为它利用了CRISPR基因组编辑技术尚未实现的潜力,以解决传统基因疗法的根本局限性以及对DMD安全有效的永久治疗的未满足需求。重要的是,这种方法也广泛适用于除了DMD之外的许多遗传疾病。因此,除了确定用于治疗DMD的主要候选核酸酶和递送方法外,这项工作还将导致CRISPR技术的进一步开发和改进,以广泛造福受遗传性疾病影响的患者。最后,骨骼肌和心肌体内基因组编辑技术的发展将广泛用于生物技术和基础科研。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles A. Gersbach其他文献
Pulling the genome in opposite directions to dissect gene networks
- DOI:
10.1186/s13059-018-1425-1 - 发表时间:
2018-03-26 - 期刊:
- 影响因子:9.400
- 作者:
Charles A. Gersbach;Rodolphe Barrangou - 通讯作者:
Rodolphe Barrangou
Jumping at the chance for precise DNA integration
急于抓住精确 DNA 整合的机会
- DOI:
10.1038/s41587-019-0210-3 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:41.700
- 作者:
Jennifer B. Kwon;Charles A. Gersbach - 通讯作者:
Charles A. Gersbach
577. Inducible Regulation of Runx2-Stimulated Osteogenesis
- DOI:
10.1016/j.ymthe.2006.08.650 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Charles A. Gersbach;Joseph M. Le Doux;Robert E. Guldberg;Andres J. Garcia - 通讯作者:
Andres J. Garcia
Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER
使用 CLEANSER 在单细胞 CRISPR 筛选中对环境 gRNA 进行表征和生物信息学筛选
- DOI:
10.1016/j.xgen.2025.100766 - 发表时间:
2025-02-12 - 期刊:
- 影响因子:9.000
- 作者:
Siyan Liu;Marisa C. Hamilton;Thomas Cowart;Alejandro Barrera;Lexi R. Bounds;Alexander C. Nelson;Sophie F. Dornbaum;Julia W. Riley;Richard W. Doty;Andrew S. Allen;Gregory E. Crawford;William H. Majoros;Charles A. Gersbach - 通讯作者:
Charles A. Gersbach
Genome engineering: a new approach to gene therapy for neuromuscular disorders
基因组工程:一种针对神经肌肉疾病的基因治疗新方法
- DOI:
10.1038/nrneurol.2017.126 - 发表时间:
2017-09-29 - 期刊:
- 影响因子:33.100
- 作者:
Christopher E. Nelson;Jacqueline N. Robinson-Hamm;Charles A. Gersbach - 通讯作者:
Charles A. Gersbach
Charles A. Gersbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles A. Gersbach', 18)}}的其他基金
University Training Program in Biomolecular and Tissue Engineering
生物分子和组织工程大学培训计划
- 批准号:
10652660 - 财政年份:2022
- 资助金额:
$ 33.94万 - 项目类别:
Epigenome Editing Technologies for Treating Diverse Disease
用于治疗多种疾病的表观基因组编辑技术
- 批准号:
9810824 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
Epigenome Editing Technologies for Treating Diverse Disease
用于治疗多种疾病的表观基因组编辑技术
- 批准号:
10214461 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
Epigenome Editing Technologies for Treating Diverse Disease
用于治疗多种疾病的表观基因组编辑技术
- 批准号:
9973203 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
Epigenome Editing Technologies for Treating Diverse Disease
用于治疗多种疾病的表观基因组编辑技术
- 批准号:
10438803 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
CRISPR/Cas9-Based Gene Editing for the Correction of Duchenne Muscular Dystrophy
基于 CRISPR/Cas9 的基因编辑用于纠正杜氏肌营养不良症
- 批准号:
9888311 - 财政年份:2016
- 资助金额:
$ 33.94万 - 项目类别:
In Vivo Epigenome Editing with CRISPR-Based Histone Acetyltransferase Transgenic Mice
使用基于 CRISPR 的组蛋白乙酰转移酶转基因小鼠进行体内表观基因组编辑
- 批准号:
9132500 - 财政年份:2016
- 资助金额:
$ 33.94万 - 项目类别:
In Vivo Epigenome Editing with CRISPR-Based Histone Acetyltransferase Transgenic
使用基于 CRISPR 的转基因组蛋白乙酰转移酶进行体内表观基因组编辑
- 批准号:
9895699 - 财政年份:2016
- 资助金额:
$ 33.94万 - 项目类别:
Scaffold-Mediated Gene Delivery for Engineering of Osteochondral Tissues
用于骨软骨组织工程的支架介导的基因传递
- 批准号:
9069429 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Scaffold-Mediated Gene Delivery for Engineering of Osteochondral Tissues
用于骨软骨组织工程的支架介导的基因传递
- 批准号:
8815847 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.94万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




