Novel gene discovery in zebra finches
斑胸草雀的新基因发现
基本信息
- 批准号:9173458
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAnimalsAreaBehaviorBehavioralBiologicalBirdsBrainBrain regionCell NucleusCharacteristicsChickensChiropteraCognitionColumbidaeCommunication impairmentComplementComplexCorpus striatum structureDataDatabasesDiseaseElementsExhibitsExperimental ModelsFOXP2 geneFamily PsittacidaeFundingFutureGene DuplicationGene Expression ProfilingGenesGeneticGenetic studyGenomeGenomicsGonadal Steroid HormonesHealthHumanImpairmentIn Situ HybridizationInvestigationLanguageLanguage DevelopmentLanguage DisordersLearningLinkMammalsMethodsModelingMolecularMolecular GeneticsNational Human Genome Research InstituteNeurobiologyOrganismOrthologous GeneOutcomeProcessProductionPropertyProteinsResearchResearch PersonnelRodentSensorySleepSongbirdsSpeechSpeech DisordersStrigiformesSyntenySystemTertiary Protein StructureTestingUnited States National Institutes of HealthVertebratesadult neurogenesisauditory feedbackbasebird songbrain cellcell typecomparativecomparative genomicscritical perioddesigndimorphismduplicate genesgene discoverygenome annotationgenome-wideinnovationinterestlearned behaviormind controlnonhuman primatenovelnovel strategiesparalogous genepublic health relevancerelating to nervous systemtooltraitvocal controlvocal learningvocalizationzebra finch
项目摘要
DESCRIPTION (provided by applicant): The availability of NIH/NHGRI-funded high quality genomes for non-human vertebrates, including avian species like the zebra finch and chicken, has made it possible to search for genomic features that are associated with traits whose mechanisms cannot be investigated in humans, thus requiring experimental model organisms. The study of some complex learned behaviors and their associated brain circuits illustrate well this point. We propose here a set of exploratory analyses in the zebra finch, a songbird, in order to elucidate the genomic basis of vocal learning, a complex behavioral trait that is a prerequisite
for speech and language acquisition in humans. Zebra finches have emerged as the premier model organism for investigating the biological basis of vocal learning. In fact, no other organism, including rodents and non-human primates, provides a comparable experimental platform that allows investigators to relate neural and genomic features to a learned vocal behavior with close ties to human speech. Recent studies have revealed remarkable convergent molecular specializations in brain circuits for vocal control in songbirds and humans, pointing to a set of shared molecular requirements for birdsong and human speech learning. Such findings have broad implications for understanding genetic mechanisms that may underlie a variety of human communication impairments and disorders. Here we propose to implement a novel computational search algorithm that is designed to discover novel and duplicated genes in the genome of the zebra finch that are absent in a closely related vocal non-learning species (manakin), and thus possibly related to vocal learning. We anticipate that this exploratory effort will identify ~100 novel genes in zebra finches. To further test for a possible link to vocal learning, we will examine the occurrance of the identified genes in multiple other vocal learner birds whose genomes are now also available. An exploratory expression analysis will attempt to link the novel genes to specific brain cell types associated with vocal learning, as well as with other songbird traits of relevance to human health, including adult neurogenesis, brain dimorphisms and sex steroid action, and sleep modulation of learning. We will also explore whether expansions of functional protein domains in the novel genes are present in other avian vocal learner species, as well as in humans. If found in the latter, such features could potentiall be used in future studies of genetic correlates of speech proficiency and disorders. The outcomes will also guide future mechanistic studies to establish causal links between specific genes and vocal learning. Lastly, our intent is to implement a computational search algorithm of broad applicability that can be utilized for novel gene searches and genome curations in any target species of interest; such an algorithm should therefore be of broad use, particularly for analysis of recently assembled genomes that have low quality or no annotations.
描述(由申请人提供):NIH/NHGRI 资助的非人类脊椎动物(包括斑胸草雀和鸡等鸟类物种)的高质量基因组的可用性使得搜索与无法在人类中研究其机制的性状相关的基因组特征成为可能,因此需要实验模型生物。对一些复杂的习得行为及其相关大脑回路的研究很好地说明了这一点。我们在这里提出了对斑胸草雀(一种鸣鸟)进行一系列探索性分析,以阐明声音学习的基因组基础,这是一种复杂的行为特征,是先决条件
用于人类言语和语言习得。斑胸草雀已成为研究声音学习生物学基础的首要模式生物。事实上,没有其他生物体,包括啮齿动物和非人类灵长类动物,能够提供类似的实验平台,使研究人员能够将神经和基因组特征与与人类语音密切相关的习得发声行为联系起来。最近的研究揭示了鸣禽和人类声音控制的大脑回路中显着趋同的分子专业化,指出了鸟类鸣叫和人类语音学习的一系列共同的分子需求。这些发现对于理解可能构成各种人类沟通障碍和疾病的遗传机制具有广泛的意义。在这里,我们建议实施一种新颖的计算搜索算法,旨在发现斑胸草雀基因组中的新颖和重复基因,这些基因在密切相关的发声非学习物种(侏儒鸟)中不存在,因此可能与发声学习有关。我们预计这项探索性工作将在斑胸草雀中鉴定出约 100 个新基因。为了进一步测试与声音学习之间的可能联系,我们将检查已识别基因在其他多种声音学习鸟类中的出现情况,这些鸟类的基因组现在也可用。探索性表达分析将尝试将新基因与与声音学习相关的特定脑细胞类型以及与人类健康相关的其他鸣禽特征联系起来,包括成年神经发生、大脑二态性和性类固醇作用以及学习的睡眠调节。我们还将探索新基因中功能蛋白结构域的扩展是否存在于其他鸟类发声学习者物种以及人类中。如果在后者中发现,这些特征可能会用于未来语言能力和障碍的遗传相关性的研究。研究结果还将指导未来的机制研究,以确定特定基因和声音学习之间的因果关系。最后,我们的目的是实现一种具有广泛适用性的计算搜索算法,可用于任何感兴趣的目标物种的新基因搜索和基因组管理;因此,这种算法应该具有广泛的用途,特别是对于分析最近组装的低质量或没有注释的基因组。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The constitutive differential transcriptome of a brain circuit for vocal learning.
- DOI:10.1186/s12864-018-4578-0
- 发表时间:2018-04-03
- 期刊:
- 影响因子:4.4
- 作者:Lovell PV;Huizinga NA;Friedrich SR;Wirthlin M;Mello CV
- 通讯作者:Mello CV
Avian genomics lends insights into endocrine function in birds.
- DOI:10.1016/j.ygcen.2017.05.023
- 发表时间:2018-01-15
- 期刊:
- 影响因子:2.7
- 作者:Mello CV;Lovell PV
- 通讯作者:Lovell PV
Correspondence on Lovell et al.: response to Bornelöv et al.
洛弗尔等人的通讯:对博内洛夫等人的回应
- DOI:10.1186/s13059-017-1234-y
- 发表时间:2017
- 期刊:
- 影响因子:12.3
- 作者:Lovell,PeterV;Mello,ClaudioV
- 通讯作者:Mello,ClaudioV
Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches.
用于斑胸草雀基因表达分析的微阵列寡核苷酸和相应的 EST/cDNA 的管理。
- DOI:10.1186/s13104-018-3402-x
- 发表时间:2018
- 期刊:
- 影响因子:1.8
- 作者:Lovell,PeterV;Huizinga,NicoleA;Getachew,Abel;Mees,Brianna;Friedrich,SamanthaR;Wirthlin,Morgan;Mello,ClaudioV
- 通讯作者:Mello,ClaudioV
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudio V Mello其他文献
Automatic recognition and statistical quantification of spatial patterns of gene expression in zebra finch brain in response to auditory stimulation
- DOI:
10.1186/1471-2202-9-s1-p68 - 发表时间:
2008-07-11 - 期刊:
- 影响因子:2.300
- 作者:
Ovidiu D Iancu;Tarciso Velho;Patrick Roberts;Claudio V Mello - 通讯作者:
Claudio V Mello
Claudio V Mello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudio V Mello', 18)}}的其他基金
Transition Support for ZEBrA, A Gene Expression Brain Atlas of the Zebra Finch
对斑胸草雀基因表达脑图谱 ZEBrA 的过渡支持
- 批准号:
9164865 - 财政年份:2016
- 资助金额:
$ 22.83万 - 项目类别:
A Gene Expression Brain Atlas of the Zebra Finch.
斑胸草雀的基因表达脑图谱。
- 批准号:
8444464 - 财政年份:2010
- 资助金额:
$ 22.83万 - 项目类别:
A Gene Expression Brain Atlas of the Zebra Finch.
斑胸草雀的基因表达脑图谱。
- 批准号:
8245200 - 财政年份:2010
- 资助金额:
$ 22.83万 - 项目类别:
A Gene Expression Brain Atlas of the Zebra Finch.
斑胸草雀的基因表达脑图谱。
- 批准号:
8052763 - 财政年份:2010
- 资助金额:
$ 22.83万 - 项目类别:
A Gene Expression Brain Atlas of the Zebra Finch.
斑胸草雀的基因表达脑图谱。
- 批准号:
7873564 - 财政年份:2010
- 资助金额:
$ 22.83万 - 项目类别:
Estrogens and Central Auditory Processing of Birdsong
雌激素与鸟鸣的中枢听觉处理
- 批准号:
7599287 - 财政年份:2008
- 资助金额:
$ 22.83万 - 项目类别:
Molecular Profiling of Song Nucleus HVC in the Zebra Finch
斑胸草雀宋核 HVC 的分子分析
- 批准号:
7626809 - 财政年份:2008
- 资助金额:
$ 22.83万 - 项目类别:
Cellular and Synaptic Physiology of Auditory Processing
听觉处理的细胞和突触生理学
- 批准号:
7107951 - 财政年份:2005
- 资助金额:
$ 22.83万 - 项目类别:
Cellular and Synaptic Physiology of Auditory Processing
听觉处理的细胞和突触生理学
- 批准号:
6989257 - 财政年份:2005
- 资助金额:
$ 22.83万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant














{{item.name}}会员




