Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
基本信息
- 批准号:9421556
- 负责人:
- 金额:$ 79.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:ApacheBenchmarkingBig DataCaringCharacteristicsClinicalCommunicationCommunitiesComplexComputer softwareDataData ScienceEventFoundationsGoalsGoldHealthInformation ResourcesInstitutionInternationalInvestigationKnowledgeKnowledge ExtractionLinkLiteratureMarshalMedicineMethodsNamesNatural Language ProcessingOntologyPatientsPersonal SatisfactionPhenotypePhilosophyPublic HealthResearchSemanticsSolidStandardizationStreamSupervisionSystemTerminologyTextTranslatingTranslational ResearchVisionWorkcommercializationdesignhealth knowledgeimprovedinformation organizationmethod developmentnovelpoint of careportabilityprecision medicineprogramssocial mediasoftware developmentsuccesssyntaxtooltranslational medicine
项目摘要
PROJECT SUMMARY
There is a deluge of health-related texts in many genres, from the clinical narrative to newswire and social
media. These texts are diverse in content, format, and style, and yet they represent complementary facets of
biomedical and health knowledge. Natural Language Processing (NLP) holds much promise to extract,
understand, and distill valuable information from these overwhelming large and complex streams of data, with
the ultimate goal to advance biomedicine and impact the health and wellbeing of patients. There have been a
number of success stories in various biomedical NLP applications, but the NLP methods investigated are
usually tailored to one specific phenotype and one institution, thus reducing portability and scalability.
Moreover, while there has been much work in the processing of clinical texts, other genres of health texts, like
narratives and posts authored by health consumers and patients, are lacking solutions to marshal and make
sense of the health information they contain. Robust NLP solutions that answer the needs of biomedicine and
health in general have not been fully investigated yet. A unified, data-science approach to health NLP enables
the exploration of methods and solutions unprecedented up to now.
Our vision is to unravel the information buried in the health narratives by advancing text-processing
methods in a unified way across all the genres of texts. The crosscutting theme is the investigation of methods
for health NLP (hNLP) made possible by big data, fused with health knowledge. Our proposal moves the field
into exploring semi-supervised and fully unsupervised methods, which only succeed when very large amounts
of data are leveraged and knowledge is injected into the methods with care. Our hNLP proposal also targets a
key challenge of current hNLP research: the lack of shared software. We seek to provide a clearinghouse for
software created under this proposal, and as such all developed tools will be disseminated. Starting from the
data characteristics of health texts and information needs of stakeholders, we will develop and evaluate
methods for information extraction, information understanding. We will translate our research into the publicly
available NLP software platform cTAKES, through robust modules for extraction and understanding across all
genres of health texts. We will also demonstrate impact of our methods and tools through several use cases,
ranging from clinical point of care to public health, to translational and precision medicine, to participatory
medicine. Finally, we will disseminate our work through community activities, such as challenges to advance
the state of the art in health natural language processing.
项目摘要
从临床叙事到新闻专线和社交媒体,许多类型的健康相关文本如潮水般涌来
媒体这些文本在内容、格式和风格上各不相同,但它们代表了
生物医学和健康知识。自然语言处理(NLP)在提取、
从这些庞大而复杂的数据流中理解并提取有价值的信息,
最终目标是推进生物医学并影响患者的健康和福祉。已经有
在各种生物医学NLP应用中有许多成功的故事,但研究的NLP方法是
通常针对一种特定的表型和一个机构,从而降低了可移植性和可扩展性。
此外,虽然在处理临床文本方面已经做了很多工作,但其他类型的健康文本,如
由健康消费者和患者撰写的叙述和帖子缺乏解决方案来整理和制作
了解它们所包含的健康信息。强大的NLP解决方案,满足生物医学和
一般健康状况尚未得到充分调查。健康NLP的统一数据科学方法使
方法和解决方案的探索是前所未有的。
我们的愿景是通过推进文本处理来解开隐藏在健康叙述中的信息
方法在一个统一的方式跨越所有体裁的文本。贯穿各领域的主题是方法的调查
健康NLP(hNLP)通过大数据与健康知识融合而成为可能。我们的提议
探索半监督和完全无监督的方法,这些方法只有在大量
数据的杠杆作用和知识注入的方法小心。我们的hNLP提案还针对
当前hNLP研究的关键挑战:缺乏共享软件。我们寻求为以下方面提供一个信息交流中心:
根据这一提议开发的软件以及所有开发的工具都将分发。起
健康文本的数据特征和利益相关者的信息需求,我们将开发和评估
信息提取、信息理解的方法。我们将把我们的研究成果公之于众
可用的自然语言处理软件平台cTAKES,通过强大的模块提取和理解所有
健康类书籍。我们还将通过几个用例展示我们的方法和工具的影响,
从临床护理点到公共卫生,到转化和精准医学,再到参与式
药最后,我们将通过社群活动传播我们的工作,如挑战前进
健康自然语言处理的最新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOEMIE ELHADAD其他文献
NOEMIE ELHADAD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOEMIE ELHADAD', 18)}}的其他基金
PhendoPHL:A Data-Science Enabled Personal Health Library to Manage Endometriosis
PhendoPHL:基于数据科学的个人健康库,用于管理子宫内膜异位症
- 批准号:
10391429 - 财政年份:2019
- 资助金额:
$ 79.35万 - 项目类别:
An NLP Approach to Generating Patient Record Summaries
生成患者记录摘要的 NLP 方法
- 批准号:
7925659 - 财政年份:2009
- 资助金额:
$ 79.35万 - 项目类别:
An NLP Approach to Generating Patient Record Summaries
生成患者记录摘要的 NLP 方法
- 批准号:
7635002 - 财政年份:2009
- 资助金额:
$ 79.35万 - 项目类别:
Training in Biomedical Informatics at Columbia University
哥伦比亚大学生物医学信息学培训
- 批准号:
10617302 - 财政年份:1992
- 资助金额:
$ 79.35万 - 项目类别:
Training in Biomedical Informatics at Columbia University
哥伦比亚大学生物医学信息学培训
- 批准号:
10405948 - 财政年份:1992
- 资助金额:
$ 79.35万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 79.35万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Continuing Grant














{{item.name}}会员




