Auto-Scope Software-Automated Otoscopy to Diagnose Ear Pathology
Auto-Scope 软件 - 用于诊断耳部病理的自动耳镜检查
基本信息
- 批准号:9790958
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcuteAddressAdverse eventAffectAlgorithmsAmericanAntibioticsAppearanceAwarenessBacterial Antibiotic ResistanceChildChildhoodCholesteatomaClinicClinicalClipComputer Vision SystemsComputer softwareComputer-Assisted Image AnalysisComputersCystDatabasesDevicesDiagnosisDiagnosticDiseaseEarEar DiseasesFinancial HardshipGoalsGuidelinesHairHandHealthHealth Care CostsHumanImageImage AnalysisImage EnhancementInterobserver VariabilityLabelLanguage DelaysLanguage DevelopmentLightingLiquid substanceMachine LearningMethodsMissionNational Institute on Deafness and Other Communication DisordersNoseNurse PractitionersOperative Surgical ProceduresOralOtitis MediaOtitis Media with EffusionOtolaryngologistOtoscopesOtoscopyPathologyPatientsPediatricsPerforationPerformancePharmaceutical PreparationsPharyngeal structurePhysician AssistantsPhysiciansPrimary Care PhysicianPrimary Health CarePublic HealthRadiology SpecialtyReportingResearchResolutionRetrievalSideSkinSocietiesSurgical PathologySystemTestingTrainingTubeTympanic membraneUnited States National Institutes of HealthWaxesWorkaccurate diagnosisacute infectionbasecentral databaseclinical decision supportcognitive developmentcomputerizeddiagnostic accuracydigital imagingdigital video recordingeffusionexperiencehearing impairmentimprovedmiddle earnovelnovel strategiesovertreatmentpersonalized therapeuticprimary care settingprototypesoftware development
项目摘要
ABSTRACT
Acute infections of the middle ear (acute otitis media - AOM), are the most commonly treated childhood
disease. Treatment is fueled by concern for complications and effects on children's cognitive and language
development. The financial burden of AOM is estimated at more than $5 billion per year. Because AOM is so
common, a major societal problem is the over-diagnosis and over-treatment of this disease, as a result of two
factors: First, accurately diagnosing AOM is difficult, even for experienced primary care or ear, nose, and throat
(ENT) physicians. Second, with a growing shortage of primary care physicians in the US, more Nurse
Practitioners and Physician Assistants serve as first-line clinicians in primary care settings, but lack extensive
training in otoscopy (i.e. clinical examination of the eardrum). Consequently, practitioners often err on the side
of making a diagnosis of AOM and prescribing oral antibiotics. Over 8 million unnecessary antibiotics are
prescribed annually, contributing to the rise of antibiotic-resistant bacteria, and creating the largest number of
pediatric medication-related adverse events. Many children with inaccurate diagnoses of AOM are referred to
ENTs for surgical placement of ear tubes, and up to 70% of these cases are not indicated.
Diagnosing AOM still depends on clinician subjectivity, based on a brief glimpse of the eardrum. This
diagnostic subjectivity creates a critical barrier to progress in society's goal of decreasing healthcare costs
and reducing over-diagnosis and over-treatment of AOM. According to the American Academy of Pediatrics in
2013, devices are needed to assist in more accurate, consistent, and objective diagnosis of AOM. A simple
and objective method of analyzing an image of a patient's ear to diagnose or rule out AOM would drastically
reduce over-treatment. This project will fill that gap, by developing computer-assisted image analysis (CAIA)
software that provides objective information to a clinician by analyzing eardrum images collected using
currently available hardware. Based on previous work in applying similar methods to improve clinician
performance in radiology and surgical pathology, our overarching hypothesis is that the incremental
implementation of enhanced images, automated identification of abnormalities, and retrieval of similar cases
will result in improved clinician diagnostic accuracy.
In our preliminary work, we developed software, called Auto-Scope, which labels eardrums as “normal” versus
“abnormal.” In this study, we propose two Specific Aims to improve diagnostic performance:
Specific Aim #1: Create an enhanced composite image of the eardrum.
Specific Aim #2: Use machine learning approaches for clinical decision support.
摘要
急性中耳感染(急性中耳炎-AOM)是儿童最常用的治疗方法
疾病。对并发症和对儿童认知和语言的影响的担忧推动了治疗
发展。非物质文化遗产造成的财政负担估计每年超过50亿美元。因为AOM是如此的
常见的一个主要社会问题是对这种疾病的过度诊断和过度治疗,其结果是两种
因素:首先,准确诊断AOM很困难,即使是有经验的初级保健或耳朵、鼻子和喉咙也是如此
(Et)医生。其次,随着美国初级保健医生的日益短缺,更多的护士
从业者和医生助理在初级保健环境中担任一线临床医生,但缺乏广泛的
接受耳镜检查培训(即鼓膜临床检查)。因此,实践者经常会犯错。
诊断出AOM并开出口服抗生素。超过800万种不必要的抗生素
每年一次的处方,导致了抗药性细菌的增加,并创造了最多的
儿科用药相关不良事件。许多诊断不准确的AOM儿童被问及
这些病例中,有高达70%的病例没有指征。
AOM的诊断仍然依赖于临床医生的主观性,基于对鼓膜的短暂一瞥。这
诊断的主观性给社会降低医疗费用的目标造成了严重的障碍
减少AOM的过度诊断和过度治疗。根据美国儿科学会于年
2013年,需要设备来帮助更准确、一致和客观地诊断AOM。一个简单的
分析患者耳朵图像以诊断或排除AOM的客观方法将极大地
减少过度治疗。该项目将通过开发计算机辅助图像分析(Caia)来填补这一空白。
通过分析使用以下方法收集的鼓膜图像向临床医生提供客观信息的软件
当前可用的硬件。基于前人在应用类似方法提高临床医生水平方面的工作
在放射学和外科病理学方面的表现,我们的首要假设是增量
实施增强图像、自动识别异常情况和检索类似病例
将提高临床医生诊断的准确性。
在我们的前期工作中,我们开发了一款名为Auto-Scope的软件,它将耳膜标记为“正常”与
“不正常。”在本研究中,我们提出了提高诊断性能的两个具体目标:
具体目标1:创建一个增强的鼓膜合成图像。
具体目标2:使用机器学习方法为临床决策提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Metin Nafi Gurcan其他文献
Gene pointNet for tumor classification
- DOI:
10.1007/s00521-024-10307-x - 发表时间:
2024-08-22 - 期刊:
- 影响因子:4.500
- 作者:
Hao Lu;Mostafa Rezapour;Haseebullah Baha;Muhammad Khalid Khan Niazi;Aarthi Narayanan;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
Assessing concordance between RNA-Seq and NanoString technologies in Ebola-infected nonhuman primates using machine learning
- DOI:
10.1186/s12864-025-11553-6 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:3.700
- 作者:
Mostafa Rezapour;Aarthi Narayanan;Wyatt H. Mowery;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
Metin Nafi Gurcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Metin Nafi Gurcan', 18)}}的其他基金
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Efficient and cost-effective breast cancer risk stratification using whole slide histopathology images
使用全玻片组织病理学图像进行高效且经济的乳腺癌风险分层
- 批准号:
10649978 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10631379 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
- 批准号:
10670448 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10701848 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Pathology Image Informatics Platform for visualization, analysis and management
用于可视化、分析和管理的病理图像信息学平台
- 批准号:
9341177 - 财政年份:2015
- 资助金额:
$ 19.91万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8215904 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
- 批准号:
9611415 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
OAMiner: Integrative Knowledge Anchored Hypothesis Discovery
OMiner:综合知识锚定假设发现
- 批准号:
7828221 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8024533 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Operating Grants














{{item.name}}会员




